Part 13 R2RML

R2RML;
RDB to RDF Mapping Language

Werner Nutt

Part 13 R2RML

Acknowledgment

These slides are based on a slide set by Mariano
Rodriguez

Semantic Technologies 2

Part 13 R2RML

Reading Material/Sources

 R2RML specification by W3C
http://www.w3.orq/TR/r2rml/

« R2RML specification byW3C
http://www.w3.0rq/2001/sw/rdb2rdf/test-cases/

Semantic Technologies 3

Standards and Tools

Mapping languages

« Standards by RDB2RDF working group (W3C)
— Direct Mapping
— R2RML

* Proprietary

Tools

Free: D2R, Virtuoso, Morph, r2Zrml4net, db2triples,
ultrawrap, Quest

— Commercial: Virtuoso, ultrawrap, Oracle SW

Part 13 R2RML

» Detailed Specification
 Books Example
 Tools

Semantic Technologies 5

Part 13 R2RML

» Detailed Specification
 Books Example
 Tools

Semantic Technologies 6

Creating RDF Terms with Term Maps

« An RDF term is either an IRI, or a
blank node, or a literal.

 Aterm map is a function that
generates an RDF term from a
logical table row. The result of that
function is known as the term
map's generated RDF term.

« Term maps are used to generate
the subjects, predicates and
objects of the RDF triples that are
generated by a triples map.

» There are several kinds of term (m:SubjectMap,

rr.constant

constant value

column name

rritemplate string template

rrtermType iRl
rr:BlankNode
r:Literal

term map

rrilanguage

maps, depending on where in the mpredicateMap,

language tag

mapping they occur: subject o
maps, predicate maps, object
maps and graph maps.

rdfs:Datatype

string template

rrinverseExpresion

Constant RDF terms (rr:constant)

* A constant-valued term map is a term map that ignores the
logical table row and always generates the same RDF
term. A constant-valued term map is represented by a
resource that has exactly one rr.constant property.

« The constant value of a constant-valued term map is the RDF
term that is the value of its rr:constant property.

 If the constant-valued term map is a subject map, predicate
map or graph map, then its constant value must be an IRI.

 If the constant-valued term map is an object map, then its
constant value must be an IRl or literal.

* The referenced columns of a constant-valued term map is the
empty set.

Constant RDF term shortcurs

« Constant-valued term maps can be expressed more
concisely using the constant shortcut properties
rr:subject, rr:predicate, rr:object and rr:graph.
Occurrences of these properties must be treated exactly
as if the following triples were present in the mapping
graph instead:

Triple involving constant Replacement triples:

shortcut property:

?Xx rr:subject ?y. ?x rr:subjectMap [rr:constant ?y].
?x rr:predicate ?y. ?x rr:predicateMap [rr.constant ?y].

?x rr:object ?y. ?x rr:objectMap [rr:constant ?y].
?x rr.graph ?y. ?x rr.graphMap [rr:constant ?y].

Example

« The following example shows a predicate-object
map that uses a constant-valued term map both for
' ' nd for it ject.
Its predlceﬁ?r:gre Ica el\,lasb rl?.Jc%(r:\stant rdf:type |;
rr:objectMap [rr.constant ex:Employee].

 If added to a triples map, this predicate-object map
would add the following triple to all resources ?x

generated by the triples map:
?x rdf:type ex:Employee.

« The following example uses constant shortcut
properties and is equivalent to the example above:

[] rr:predicate rdf:type;
rr:object ex:Employee.

10

Example with constants

@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix foaf: <http://xmins.com/foaf/0.1/> .

@prefix ex: <http://fexample.com/> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@base <http://example.com/base/> .

<TriplesMap1>
a rr:TriplesMap;

rr:logicalTable [rr:tableName "\"Student\""];
rr:subjectMap [rr:constant ex:BadStudent] ;

rr:predicateObjectMap
[

rr:predicateMap [rr:constant ex:description |;
rr:objectMap [rr.constant "Bad Student";]

]

Student

Name (PK)
VARCHAR(50)

Venus

11

Terms from a Column

* A column-valued term map is a term map that is
represented by a resource that has exactly one rr.column
property.

* The value of the rr:column property must be a valid
column name. The column value of the term map is the
data value of that column in a given logical table row.

* The referenced columns of a column-valued term map is

the singleton set containing the value of the term map's
rr.column property.

« The following example defines an object map that
generates literals from the DNAME column of some
logical table.

[] rr:objectMap [rr:column "DNAME"].
S

12

From template

A template-valued term map is a term map that is represented by a resource
that has exactly one rr:template property. The value of the rr:template property
must be a valid string template.

A string template is a format string that can be used to build strings from
multiple components. It can reference column names by enclosing them in curly
braces (“{” and “}’). The following syntax rules apply to valid string templates:

Pairs of unescaped curly braces must enclose valid column names.

Curly braces that do not enclose column names must be escaped by a
backslash character (“\"). This also applies to curly braces within column
names.

Backslash characters (“\") must be escaped by preceding them with another
backslash character, yielding “\\". This also applies to backslashes within
column names.

There should be at least one pair of unescaped curly braces.

If a template contains multiple pairs of unescaped curly braces, then any
pair should be separated from the next one by a . This is any
character or string that does not occur an%/where in an]}/ of the data values of
either referenced column; or in the IRI-safe versions of the data values, if
the term type is rr:IRI (see note below).

13

<TriplesMap2> a rr:TriplesMap;
rr:logicalTable [rr:tableName "\"Sport\""];

rr:subjectMap [rr:template "http://example.com/resource/sport_{\"ID\"}_{\"ID\"}"";];

rr:predicateObjectMap
[
rr:predicate rdfs:label ; rr.objectMap [rr:.column "\"Name\"";];
I;
Student
ID (PK) Sport(FK) Name
INTEGER INTEGER VARCHAR(50)
10 100 Venus Williams
20 NULL Demi Moore
<TriplesMap2> a rr:TriplesMap;

rr:logicalTable [rr:tableName "\"Sport\""];

rr:subjectMap [rritemplate "http://example.com/resource/sport_{\"ID\"}”{\"ID\"}";];
rr:predicateObjectMap

[

rr:predicate rdfs:label ; rr.objectMap [rr:.column "\"Name\"";];

l;

Sport

ID (PK) Name
INTEGER VARCHAR(50)

100 Tennis

14

From template

* The template value of the term map for a given logical table row is
determined as follows:

— Let result be the template string

— For each pair of unescaped curly braces in result:

* Let value be the data value of the column whose name is enclosed in the
curly braces

 If value is NULL, then return NULL
» Let value be the natural RDF lexical form corresponding to value

 If the term type is rr:IRI, then replace the pair of curly braces with an IRI-safe
version of value; otherwise, replace the pair of curly braces with value

— Return result

The IRI-safe version of a string is obtained by applying the following

transformation to any character that is not in the iunreserved production
in [RFC3987]:

— Convert the character to a sequence of one or more octets using
UTF-8 [RFC3629]

— Percent-encode each octet [RFC3986]

15

Notes

 R2RML always performs percent-encoding when IRls
are generated from string templates. If IRIs need to be
generated without percent-encoding, then rr.column
should be used instead of rritemplate, with an R2ZRML
view that performs the string concatenation.

 In the case of string templates that generate IRIs, any
single character that is legal in an IRI, but percent-
encoded in the IRI-safe version of a data value, is a safe

separator. This includes in particular the eleven sub-
delim characters defined in [RFC3987]: 1$&'()*+,;=

16

IRIs, Literal, Blank Nodes
(rr termType)

The term type of a column-valued term map or template-
valued term map determines the kind of generated RDF
term (IRIs, blank nodes or literals).

 If the term map has an optional rritermType property,
then its term type is the value of that property. The value
must be an IRl and must be one of the following options:

— If the term map is a subject map: rr:IRI or
rr:BlankNode

— If the term map is a predicate map: rr:IRI

— If the term map is an object map: rr:IRl,
rr:BlankNode, or rr:Literal

— If the term map is a graph map: rr:IRI

17

IRIs, Literal, Blank Nodes
(rr:termType)

 If the term map does not have a rr:itermType property,
then its term type is:

— rr:Literal, if it is an object map and at least one of the
following conditions is true:
|t is a column-based term map.

* It has a rrilanguage property (and thus a specified language
tag).
* It has a rr:datatype property (and thus a specified datatype).

— rr:IRIl, otherwise.

18

Part 13 R2RML

Example:

<TriplesMap1>
a rr:TriplesMap;
rr:logicalTable [rr:sqlQuery """
SELECT ('Student' || "Student") AS Studentld,
"Student"”
FROM "Student_Sport"

l;

rr:subjectMap [rr:column "Studentld"; rr:termType rr:Literal,
rr:class ex:Student |;

rr:predicateObjectMap
[
rr:predicate foaf:name ;
rr:objectMap [rr:column "\"Student\""]

]

Semantic Technologies 19

IRIs, Literal, Blank Nodes
(rr:termType)

Term maps with term type rr:IRl cause data errors if the
value is not a valid IRI (see generated RDF term for details).
Data values from the input database may require percent-
encoding before they can be used in IRIs. Template-valued

term maps are a convenient way of percent-encoding data
values.

Constant-valued term maps are not considered as having a
term type, and specifying rritermType on these term maps has
no effect. The type of the generated RDF term is determined
directly by the value of rr:constant: If it is an IRI, then an IRI will
be generated; if it is a literal, a literal will be generated.

20

Part 13 R2RML

Exercise: model as values

Patient ___|CancerType __|Stage

Mary Lung 1

Semantic Technologies 21

Part 13 R2RML

Exercise: model as objects

Patient ___|CancerType __|Stage

Mary

Semantic Technologies 22

Modeling as values vs. objects

« Values:
— Values allow for natural comparison and queries
— DB style, easy to grasp by beginners
— Complexity of the data is low
* Objects
— Expressivity high
— Data can be closer to the original conceptual model

— Possibility to apply hierarchies and reasoning over
objects

23

Language Tags (rr:language)

* A term map with a term type of rr:Literal may have a
specified language tag. It is represented by the
rr:language property on a term map. If present, its value
must be a valid language tag.

« A specified language tag causes generated literals to be
language-tagged plain literals

24

Part 13 R2RML

Example

<TriplesMap1>
a rr:TriplesMap;
rr:logicalTable [rr:sqlQuery "™
SELECT "Code", "Name", "Lan"
FROM "Country"
WHERE "Lan" ='EN";

1

rr:subjectMap [rr:template "http://example.com/{\"Code\"}" |;

rr:predicateObjectMap
[
rr:predicate rdfs:label;
rr.objectMap [rr:column "\"Name\""; rr:language "english"]

]

Semantic Technologies 25

Typed Literals (rr:datatype)

A datatypeable term map is a term map with a term type of
rr:Literal that does not have a specified language tag.

Datatypeable term maps may generate typed literals. The
datatype of these literals can be automatically determined
based on the SQL datatype of the underlying logical table
column (producing a natural RDF literal), or it can be explicitly
overridden using rr:datatype (producing a datatype-override
RDF literal).

A datatypeable term map may have a rr.datatype property. Its
value must be an IRI. This IRl is the specified datatype of the
term map.

A term map must not have more than one rr:datatype value.

A term map that is not a datatypeable term map must not
have an rr.datatype property.

26

Typed Literals (rr:datatype)

« The implicit SQL datatype of a datatypeable term map
iIs CHARACTER VARYING if the term map is a template-

valued term map; otherwise, it is the SQL datatype of the
respective column in the logical table row.

« See generated RDF term for further details on
generating literals from term maps.

One cannot explicitly state that a plain literal without
language tag should be generated. They are the default for
string columns. To generate one from a non-string column, a
template-valued term map with a template such as
"{MY_COLUMN}" and a term type of rr:Literal can be used.

27

Example

<TriplesMap1>
a rr:TriplesMap;
rr:logicalTable [rr:sqlQuery
Select ('Department’ || "deptno") AS deptld
, "deptno”
., "dname”
, "loc"
from "DEPT"

L

rr:subjectMap [rr.column "deptld"; rritermType rr:BlankNode;
rr:inverseExpression "{\"deptno\"} =
substr({deptld},length('Department’)+1)"];

rr:predicateObjectMap
[

rr:predicate dept:deptno ;

rr.objectMap [rr:column "\"deptno\""; rr:datatype xsd:positivelnteger]
I;
S

28

Inverse Expressions

(rr:inverseExpression)

* An inverse expression is a string template associated with a
column-valued term map or template-value term map. It is
represented by the value of the rriinverseExpression property.
This property is optional and there must not be more than one
for a term map.

* Inverse expressions are useful for optimizing term maps that
reference derived columns in R2ZRML views. An inverse
expression specifies an expression that allows
“reversing” of a generated RDF term and the construction
of a SQL query that efficiently retrieves the logical table
row from which the term was generated. In particular, it
allows the use of indexes on the underlying relational tables.

« Every pair of unescaped curly braces in the inverse
expression is a column reference in an inverse expression.
The string between the braces must be a valid column name.

29

Example

<TriplesMap1>
a rr:TriplesMap;
rr:logicalTable [rr:sqlQuery
SELECT ('Department’ || "deptno") AS "deptld"
, "deptno” |, "dname"
, "loc"
FROM "DEPT"

T

rr:subjectMap [rr:column "\"deptld\""; rr:termType rr:BlankNode;
rr:inverseExpression "{\"deptno\"} =
substr({\"deptld\"},length('Department’)+1)"];

rr:predicateObjectMap
[

rr:predicate dept:location ;
rr.objectMap [rr:column "\"loc\""]

I;
S

30

Part 13 R2RML

Example

« The following table states distances in kilometers,
generate RDF that presents this data in miles, add an
inverse map that allows to reverse (1km = 0,62 mi).

cityl ___lcity2 ___|distance

bolzano munich 278,4

Semantic Technologies 31

Foreign Key Relationships among

Logical Tables

* A referencing object map allows using the subjects of
another triples map as the objects generated by a
predicate-object map. Since both triples maps may be based
on different logical tables, this may require a join between the
logical tables. This is not restricted to 1:1 joins.

« A referencing object map is represented by a resource that:

— has exactly one rr:parentTriplesMap property, whose
value must be a triples map, known as the referencing
object map's parent triples map.

— may have one or more rr:joinCondition properties,
whose values must be join conditions.

32

Foreign Key Relationships among

Logical Tables

A join condition is represented by a resource that has exactly one
value for each of the following two properties:

— rr:child, whose value is known as the join condition's child
column and must be a column name that exists in the logical
table of the triples map that contains the referencing object map

— rr:parent, whose value is known as the join condition's parent
column and must be a column name that exists in the logical
table of the referencing object map's parent triples map.

The child query of a referencing object map is the effective SQL
query of the logical table of the term map containing the referencing
object map.

The parent query of a referencing object map is the effective SQL
query of the logical table of its parent triples map.

33

Foreign Key Relationships among

Logical Tables

 The joint SQL query of a referencing object map is:

— If the referencing object map has no join condition:
SELECT * FROM ({child-query}) AS tmp

— If the referencing object map has at least one join condition:
SELECT * FROM ({child-query}) AS child,
({parent-query}) AS parent
WHERE child.{child-column1}=parent.{parent-column1}
AND child.{child-column2}=parent.{parent-column2}
AND ...

where {child-query} is the referencing object map's child query,
{parent-query} is its parent query, {child-column1} and {parent-
column1} are the child column and parent column of its first join
condition, and so on. The order of the join conditions is chosen
arbitrarily.

— The joint SQL query is used when generating RDF triples
from referencing object maps.

34

Assigning Triples to Named Graphs

Each triple generated from an R2ZRML mapping is placed
into one or more graphs of the output dataset. Possible
target graphs are the unnamed default graph, and the IRI-
named named graphs.

Any subject map or predicate-object map may have one
or more associated graph maps. They are specified in one
of two ways:
— using the rr:graphMap property, whose value must be a
graph map,
— using the constant shortcut property rr:graph.

Graph maps are themselves term maps. When RDF triples
are generated, the set of target graphs is determined by
taking into account any graph maps associated with the
subject map or predicate-object map.

If a graph map generates the special IRI rr.defaultGraph, then
the target graph is the default graph of the output dataset.

35

* In the following subject map example, all generated
RDF triples will be stored in the named graph
ex:DepartmentGraph.

[] rr:subjectMap |
rr:template "http://data.example.com/department/{DEPTNO}";

rr.graphMap [rr:constant ex:DepartmentGraph];

]

« This is equivalent to the following example, which
uses a constant shortcut property:

[] rr:subjectMap |
rr:template "http://data.example.com/department/{DEPTNO}";

rr:graph ex:DepartmentGraph;
].

36

 In the following example, RDF triples are placed
into named graphs according to the job title of
employees:

[] rr:subjectMap |
rr:template "http://data.example.com/employee/{EMPNQO}";
rr.graphMap [rr:template "http://data.example.com/jobgraph/{JOB}"];

]

« This is equivalent to the following example, which
uses a constant shortcut property:

<http://data.example.com/jobgraph/CLERK>

37

Part 13 R2RML

» Detailed Specification
 Books Example
 Tools

Semantic Technologies 38

* Propose a Class/Property vocabulary
* Propose a URI scheme for each entity type
BOOkS DB « Define an R2ZRML mapping and an OWL ontology
such that a) the number of mappings is minimal,
b) data is correctly typed c)
language and type are specified when necessary

tb_affiliated_writers tb_on_prob_wr
wr_code (PK) tb_authors wr_code (PK)
wr_name wr_name
bk_code (FK)
\ wr_id (FK)
« written_by \,\.j”/ ‘\‘/wrinenbyb
tb_bk_gen) tb_books . = tb_edition = tb_editor
has_edition » edited_by »
id_bk (FK) bk_code (PK) ed_code (PK) ed_code (PK)
gen_name bk _title ed_type ed_name
bk_type pub_date
ed
gdito: (FK) Genre
bk_id (FK) o
Fiction
Horror
Book types Edition type Mystery
A = Audio Book S = Special/Limited Fantasy
E = E-Book Romance

39

SPARQL Target queries

« The ontology/mappings should allow for easy (preferably
avoiding UNION) querying for the following data:

RE-001: Query for all the author names (22 tuples)
RE-002: Query for all the book titles (24 tuples).

RE-003: Query for all the editor names (11 tuples).
RE-004: Query for all the titles that all audio books.
RE-005: Query for all the names for all authors that are an
emerging writer.

RE-006: Query for all the dates of publication and edition
numbers of books that are special editions.

RE-007: Query for all the book titles written by a specific
author.
RE-008: Query for the complete information about a book,

iIncluding its author, genre, publication date and edition
number.

40

Part 13 R2RML

» Detailed Specification
 Books Example
* Tools

Semantic Technologies 41

Part 13 R2RML

Implementations
Implementation | Contact Person |RZRML |DM I
I
Ultrawrap Juan Sequeda Y Y 1
XSPARQL Nuno Lopes Y 1
D2R Richard Cyganiak |N Yo
SWObjects Eric N v
SIS Prud’hommeaux I

Jean-Paul
Morph Calbimonte Y N _E
RDF-RDB2RDF |Toby Inkster Y N |
Virtuoso lvan Mikhailov Y N E
DB2Triples Laurent Mazuel Y Y 1

Semantic Technologies 42

