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Abstract. The 3D Semantic Annotation (3DSA) system expedites the
classification of 3D digital surrogates from the cultural heritage domain,
by leveraging crowd-sourced semantic annotations. More specifically, the
3DSA system generates high-level classifications of 3D objects by apply-
ing rule-based reasoning across community-generated annotations and
low-level shape and size attributes. This paper describes a particular
use of the 3DSA system – cataloguing Greek pottery. It also describes
our novel approach to rule-based reasoning that is modelled on concepts
inspired from Markov logic networks. Our evaluation of this approach
demonstrates its efficiency, accuracy and versatility, compared to classi-
cal rule-based reasoning.

1 Introduction

Advances in 3D data acquisition, processing and visualisation are providing cul-
tural institutions with novel methods for preserving cultural heritage and for
making it more accessible to scholars and the public, via online search inter-
faces. An increasing number of museums are using 3D scanning techniques to
overcome the limitations of 2D data representations and to improve access to
high quality surrogates of fragile and valuable artefacts via the Internet [1–3].

The growing popularity of scanning of cultural heritage artefacts to generate
3D surrogates, has led to the need for online repositories, to store these large
scale collections and for tools and user interfaces to make these resources easily
accessible, sharable and retrievable [4]. However, as the size of the online col-
lections expands, the ability to catalogue and search such collections becomes
increasingly difficult [5]. Museums are finding the cost of providing rich con-
textual metadata for such collections prohibitive and hence are keen to explore
other ways to generate it, for example, by exploiting social tagging and annota-
tion services [6].

Several successful examples of applying Web 2.0 techniques in the museum
context have been provided in the recent past, most of which focus on social tag-
ging for 2D images, e.g., the Powerhouse Museum OPAC2.0 project1 [7] and the

1 http://www.powerhousemuseum.com/museumexchange/
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Steve.Museum project [5]. A list of successful case studies of crowdsourcing in
the cultural heritage domain is presented in the work of Oomen and Aroyo [8]. In
this paper we present an innovative application – the 3DSA system – which takes
social tagging and semantic annotations to a new level, by applying them to the
rich and interactive environment of 3D digital surrogates of cultural heritage
artefacts. In particular, we focus on leveraging crowd-sourced semantic anno-
tations to streamline the cataloguing of 3D museum artefacts via probabilistic
reasoning, which will lead to improved search and retrieval of 3D objects.

Traditionally, museum artefacts are manually curated and classified by ex-
perts using a process of literature search and comparison with similar related
artefacts. This is a laborious and time-consuming task. However certain classes
of objects in the cultural heritage domain are governed by well-defined rules and
guidelines (e.g., Greek vases). Furthermore, some of the attributes used in these
guidelines can be automatically acquired (e.g., spatial dimensions and shapes
of artefacts), while others require human interpretation (e.g., the characters de-
picted on the surface of the artefacts). Hence, our hypothesis is that: given a set
of domain-specific rules (documented by the domain experts) for classifying an
artifact, together with a set of artefact properties/attributes that have been ei-
ther manually or automatically acquired, the (high-level semantic) classification
task can be automated by performing rule-based reasoning. More specifically, as-
suming curatorial/anthropological experts define the rules (for a particular class
of artefacts), and cultural heritage scholars, students and enthusiasts semanti-
cally annotate components of the artefacts, then the system can combine these
manual tags with automatically extracted size and shape attributes, to provide
on-demand the most likely classification for given 3D objects.

This is a key goal and the underlying methodology of our 3DSA system. Using
a custom-built, domain-specific ontology, the 3DSA system enables semantic
annotation of points, surface regions and 3D volumetric segments of 3D objects.
Users can interactively specify the low-level features and annotate them with tags
drawn from ontology. These annotations are then used by a rule-based reasoning
engine to infer high-level descriptions of the 3D objects, which in turn, facilitate
the classification and cataloguing of the 3D artefacts. In this paper, we describe
the solution we have developed to perform this process by adopting a Markov
logic network approach and combining first order logic rules with probabilities.
The evaluation results indicate that our approach outperforms classical first
order logic in terms of both efficiency and accuracy and at the same time attracts
excellent feedback in usability tests.

The 3DSA system is deployed in the R D Milns Antiquities museum at The
University of Queensland and is used by a wide range of users, from postgrad-
uate students and museum staff to educators and archeologists. The current
application focus is Greek pottery, both because this topic is a major interest of
the museum and also because our current 3D scanner can easily accommodate
objects of this size.

The remainder of the paper is organised as follows. Section 2 presents the
high level overview of the system architecture, while Section 3 presents a brief
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Fig. 1. Overview of the 3DSA system architecture

description of our use case and its associated inference and retrieval require-
ments. In Section 4, we describe in detail the probabilistic reasoning mechanism.
Before concluding in Section 7, we discuss some experimental results (Section 5)
and the existing related work (Section 6).

2 3DSA System Overview

The 3DSA system provides a Web interface that enables users to explore col-
lections of 3D objects via a browser interface, as well as select individual 3D
objects and attach semantic annotations to either the entire object or to points,
surface regions or segments of those 3D objects. Fig. 1 depicts the high-level
architecture of the system, which comprises seven major components.

The front-end of the system consists of two clients:

– the 3DSA Annotation client – an Open Annotation (OA) client, developed
using jQuery, HTML5 and WebGL with O3DWebGL library, which provides
the 3D interaction and semantic annotation capabilities, and

– the 3DSA Web Portal – an online gallery, developed using Drupal 7, jQuery
and HTML5, which enables exploration and searching capabilities.

The back-end of the system is composed of:

– the 3D object repository – responsible for storing the 3D objects in their
native formats;

– the 3DSA Web portal backend – responsible for serving and managing Web
pages and contents for Web portal using Drupal 7 CMS, PHP and MySQL
as the underlying database.

– a knowledge base that stores museum metadata, domain specific ontologies
and semantic annotations – developed on top of an OpenRDF Sesame server;

– the 3DSA link module – a custom built module for Drupal 7 to provide
support for managing and uploading 3D objects, as well as access to the
annotation client and the semantic search features offered by the knowledge
base, and
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Fig. 2. The main front-end of the 3DSA annotation client

– the Reasoning service (built using the Euler YAP Engine (EYE) reasoner2)
– that provides inference capabilities based on expert-curated rules, crowd-
sourced semantic annotations and metadata automatically generated from
size and shape measurement.

Fig. 2 illustrates the main user interface of the 3DSA annotation client dis-
playing a 3D representation of an “Attica Black-Figure lekythos” from 500BC,
with an annotation attached to a surface depiction of a “kantharos”. 3DSA offers
complex manipulation and viewing functionalities, including dynamic viewpoint
perspective (i.e., only annotations relevant to the current viewpoint are dis-
played), viewing objects in different resolutions (high, medium, low) – subject
to the available bandwidth and graphical computing power, as well as real-time
collaborative annotation visualisation.

To support the current use case of the system, i.e., Greek pottery, we have
developed the Greek Vases ontology (GVO) as an extension CIDOC-CRM3 –
the de facto standard for defining conceptual entities and relationships in the
cultural heritage domain. GVO defines the atomic components (parts) of Greek
vases (e.g., body, mouth, neck), in addition to the illustrative decorations typi-
cally depicted on them (e.g., patterns, inscriptions, figures) and their associated
attributes (e.g., sizes, shapes, colour). Excluding the CIDOC-CRM components,
the current version of GVO ontology contains 123 concepts, 76 properties and
1534 instances – the collection of instances will expand in time with the increase
of the community contribution.

2 http://eulersharp.sourceforge.net/
3 http://www.cidoc-crm.org/

http://eulersharp.sourceforge.net/
http://www.cidoc-crm.org/
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Fig. 3. Semantically annotated region of a Greek vase

In terms of functionality, end-users can interactively specify points and poly-
gon shapes overlaid on the displayed 3D object (to define surface regions and
segments) and annotate them with concepts from GVO. Moreover, the system
guides the user in the semantic annotation process, by suggesting ontological
concepts via auto-completion or via pre-defined structural elements (e.g., part
types or attributes). For example, Fig. 3 depicts a fully specified semantic an-
notation attached to the handle of a 3D Greek vase, which includes the part
type (Handle), its colour (Black), and its shape (Cylindrical). The annota-
tion result is serialised using the Open Annotation Data Model4 that has been
extended via a 3D fragment identifier based on X3D specification [9].

3 Use Case

As described in the Introduction, the 3DSA system is deployed and used in the
R D Milns Antiquities Museum at the University of Queensland. The muse-
ums aim is to crowd-source semantic annotations from online scholars, students,
cultural heritage enthusiasts and other interested end-users to assist with the
cataloguing of their Greek pottery collection. Following a series of discussions
with the museum experts, we were able to define usage scenarios and the nec-
essary requirements for the 3DSA system. An example of a practical scenario is
presented below.

Collaborative cataloguing scenario. A university educator creates an interac-
tive assessment for his students. The students are required to identify the com-
ponents of a scanned Greek container and to provide specific descriptions of its
parts. Each student is able to create his/her own annotations. For example, the

4 http://www.openannotation.org/spec/core/

http://www.openannotation.org/spec/core/
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Fig. 4. Ranking of probable shapes for the given 3D object, based on the 3DSA rea-
soning capability

first student specifies the following attributes of the body, e.g., small and deep,
a second student describes the handles, e.g., vertical handle for one and hori-
zontal handle for the other, while a third one defines the mouth as being wide.
The museum curator, in charge of cataloguing the newly scanned object, typi-
cally, uses his/her prior knowledge and the literature on Greek pottery shapes
to classify this artefact. However, since the students have already collectively
annotated the parts of the container, the museum expert is able to leverage this
crowd-sourced knowledge to infer a set of candidates. Using the 3DSA inference
engine, the curator can retrieve a ranked list of candidates (based on the size
and shape of its parts), together with their probability (see Fig. 4). The cu-
rator observes that the top result (83.33% probability) is a “Skyphos Type B”
shape, due to its “small deep bowl-shaped body”, “vertical handle”, “horizon-
tal handle”, “wide mouth” and “thin foot”. After consulting the literature on
“Skyphos Type B” vases, the curator confirms the validity of the result and the
artefact is tagged/catalogued appropriately. Additionally, based on the underly-
ing ontology, the newly acquired object is also automatically be tagged with the
synonyms, “Glaux Skyphos”, “Skyphos” and “Drinking cup”.

Using such scenarios we have gathered the following set of requirements:

Crowd-Sourcing Semantic Annotations. As mentioned, the museum is keen
to exploit the power of collective intelligence, and hence the system should enable
collaborative semantic annotation of points, surface regions and segments of 3D
artefacts.

Flexible Classification of Artefacts. The most laborious task in this context
is determining the most reliable classification for a given artefact. The system
needs to take advantage of the crowd-sourced semantic annotations and combine
them with metadata generated from the 3D scanning process to enable precise
cataloguing. Furthermore, the system needs to be flexible and take into account
possibly incorrect semantic annotations, hence leading to the need for a soft clas-
sification (based on probability), as opposed to a hard multi-class classification.
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Fig. 5. Example of a simple rule defining “Skyphos Type B”

Defining Expert Rules. The Greek pottery domain is governed by a fairly
well-established set of cataloguing guidelines based on the size and shape of their
parts 5. Our approach requires experts to encode these guidelines into rules,
which will then drive the inference. Consequently, the rule definition process
needs to be simple and oriented towards non-technical users (e.g., as depicted in
Fig. 5).

4 Reasoning Capabilities in 3DSA

The expert rules are used to derive high-level artefact descriptions from low-level
annotated features. To enable reasoning across the annotations, we are using the
Euler YAP Engine (EYE)6. The EYE reasoner is a high performance backward-
chaining inference engine enhanced with Euler path detection. The rules used
for inferencing are formatted in N3Logic – an extension of RDF that enables
the usage of the same language for both logic and data. According to their deep
taxonomy benchmark7, EYE is the most efficient among other existing popular
semantic reasoners such as Jena, Pellet and CWM.

In a Web environment, EYE has two components: the EYE client widget and
the EYE HTTP server. The former is a Javascript client extension that provides
the communication channel with the EYE server, while the latter is an HTTP
interface for the EYE reasoning engine.

Fig. 6 illustrates the data flow of rule-based reasoning capability within 3DSA.
On the backend side, the EYE reasoner has direct access to the data stored in
the knowledge base. When the user requires inference, the knowledge base sends
the latest set of rules to the EYE Reasoner, while the 3DSA Annotation Client
invokes the EYE Client Widget. This communicates with the reasoner, retrieves
the results and provides them to the Annotation Client, which presents them to
the user (see Fig. 4). If the user confirms the validity of one of the results, the
corresponding inference is recorded in the knowledge base.

From a functional perspective, the goal is to infer the shape or class of a given
3D object based on the crowd-sourced annotations associated with the low-level
shape features. For example, as described in Sect. 3, if an object is annotated
with wide mouth, small deep body, vertical handle and horizontal handle, then we
want to infer with a certain level of precision that the object is a Skyphos Type B

5 http://www2.ocn.ne.jp/~greekart/vase/shape.html
6 http://eulersharp.sourceforge.net
7 http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt

http://www2.ocn.ne.jp/~greekart/vase/shape.html
http://eulersharp.sourceforge.net
http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
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Fig. 6. Data flow in the reasoning component of 3DSA

(Glaux Skyphos). Our goal is to present the user with a ranked list of candidates,
each of which has an associated probability, instead of a rigid classification result,
typical of conventional reasoning. This probabilistic approach is critical in our
context, since we rely on crowd-sourced semantic annotations, which may be
ambiguous, incomplete or incorrect. In such a context, conventional reasoning
will be highly error prone and likely to produce unreliable results.

In order to generate a ranked list of candidates, we combine first order logic
with probabilities. More specifically, our solution is based on the concept of
Markov logic network. Markov logic [10, 11] is a representation formalism that
generalises first-order logic (FOL) by attaching probabilities to FOL statements.
It defines all unsatisfiable statements as having a probability of zero and all
universally true statements as having a probability of one. A collection of such
probabilistic statements forms a Markov logic network. Inspired by this frame-
work, we have used the same concept to soften the constraints of FOL – if an
entity definition does not satisfy one statement, it is simply returned as less
probable rather than impossible.

The difference between the classic Markov logic network and our approach
is found in the weight distribution. Instead of using the typical probability dis-
tribution as part of a log-linear model, we compute the final probability of a
candidate by normalising its sum of weights with the total weight provided by
a rule (see Eq. 1).

P (A = s) =
1

∑

fi∈Fs

Wi

⎛

⎝
∑

fi∈Fs

Wi

∏

cj∈Cfi

fj(g)

⎞

⎠ =
1

∑

fi∈Fs

Wi

⎛

⎝
∑

fi∈Fs

WiGi

⎞

⎠ (1)

The probability P of a 3D artifact A having shape s, is the sum all the
weights Wi associated with each feature fi, within the set of clauses Fs applied
on the shape s, multiplied with the grounding Gi of the corresponding feature
fi, normalised by the sum of all weights Wi of shape s. The grounding variable
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takes a binary value, Gi ∈ {0, 1}, corresponding to a match (1) or not (0) of Gi

with the feature fi.
This approach does not restrict the description of a grounding feature to an

atomic element. A grounding feature may very well be expressed via multiple
conditions assigned to the antecedent in a rule. The grounding cj(g) of each
corresponding condition cj within the set Cfi would then belong to a feature fi
that should be considered. The grounding of each condition is expressed, again
by a binary variable cj(g) ∈ {0, 1}, with cj(g) = 1 if condition cj is matched and
0 otherwise. The product of the grounding values for all conditions

∏
cj∈Cfi

fj(g)
forms the grounding for the specific feature Gi, which has value of 0 or 1.

Below we present an example of a complex rule, broken down into a set of
elementary rules, each of which describes a grounding feature of a Greek pottery
shape. In general, the rule has the format listed below:

Shape a gvo:Greek_Pottery_Shape

Antecedent{Grounding_feature_1} → Consequent{Shape, ID_1, Weight_1}
Antecedent{Grounding_feature_2} → Consequent{Shape, ID_2, Weight_2}
Antecedent{Grounding_feature_3} → Consequent{Shape, ID_3, Weight_3}

Each grounding feature is separately assigned to the antecedent of an individ-
ual rule and each rule has a consequent associated with a Greek pottery shape,
a unique ID and a weight value. When an antecedent is matched, the shape and
its corresponding weight are provided. The reasoner iterates over these results,
sums the weights and computes the probability of each Greek pottery shape.
Finally, the results are ranked and presented to the user.

To achieve the above using the EYE reasoner, the N3Logic rules for each
Greek pottery shape must be written in the following format (the rule below
corresponds to the 3D object depicted in Fig. 4):

gvo:Skyphos_type_B a gvo:Greek_Pottery_Shape.

?g gvo:hasPart [a gvo:Body; gvo:hasCharacteristic gvo:small].

=> (?g gvo:Skyphos_type_B rule1) ex:giveWeight 0.3.

?g gvo:hasPart [a gvo:Body; gvo:hasCharacteristic gvo:deep].

=> (?g gvo:Skyphos_type_B rule2) ex:giveWeight 0.7.

?g gvo:hasPart [a gvo:Body; gvo:hasCharacteristic gvo:bowl-shape].

=> (?g gvo:Skyphos_type_B rule3) ex:giveWeight 1.0.

?g gvo:hasPart [a gvo:Handle; gvo:attachedAlong gvo:horizontal].

=> (?g gvo:Skyphos_type_B rule4) ex:giveWeight 0.5.

?g gvo:hasPart [a gvo:Handle; gvo:attachedAlong gvo:vertical].

=> (?g gvo:Skyphos_type_B rule5) ex:giveWeight 0.5.

?g gvo:hasPart [a gvo:Mouth; gvo:hasCharacteristic gvo:wide].

=> (?g gvo:Skyphos_type_B rule6) ex:giveWeight 1.0.

?g gvo:hasPart [a gvo:Foot; gvo:hasCharacteristic gvo:thin].

=> (?g gvo:Skyphos_type_B rule7) ex:giveWeight 1.0.

?g gvo:hasMeasurement [gvo:hasHeightValue[math:lessThan 300]].

=> (?g gvo:Skyphos_type_B rule8) ex:giveWeight 1.0.



Reasoning on Crowd-Sourced Semantic Annotations 237

In addition to the specific rules, we have specified the way in which the sum
of the weights should be calculated for all Greek pottery shapes/classes, as well
as the corresponding probability:

{
?TARGET a :Greek_Pottery.

?SHAPE a :Greek_Pottery_Shape.

(?SCOPE ?SPAN) e:findall

(?WEIGHT

{(?TARGET ?SHAPE ?RULE) ex:giveWeight ?WEIGHT}
[math:sum ?PASS_WEIGHT]).

(?SCOPE ?SPAN) e:findall

(?WEIGHT

{?P => {(?TARGET ?SHAPE ?RULE) ex:giveWeight ?WEIGHT}}
[math:sum ?TOTAL_WEIGHT]).

(?PASS_WEIGHT ?TOTAL_WEIGHT) math:quotient ?PROBABILITY.

} => ?TARGET :has_shape (?PROBABILITY ?SHAPE).

For example, to determine whether a pot has the shape/class “Skyphos Type
B” based on the annotations provided by the students in the scenario introduced
in Sect. 3, i.e., “small deep body”, “horizontal handle”, “vertical handle” and
“wide mouth”, the reasoner will sum the weights of the matched statements
using the rule given above (0.3 + 0.7 + 1 + 0.5 + 0.5 + 1 = 5) and then divide
them by the total weight (0.3 + 0.7 + 1+ 0.5 + 0.5 + 1 + 1 = 6). This will result
in a final probability of 83.33% (5/6 ∗ 100 = 83.33) for the given pot to have the
shape/class “Skyphos Type B”.

5 Evaluation

We have performed several experiments to test both the efficiency as well as the
scalability of our reasoning approach. In addition we have conducted a usability
study of our cataloguing suggestions approach. Below, we discuss the results
of each of these tests. The system used throughout the performance tests was
equipped with an Intel Core 2 Duo 2.66GHz CPU, 1.96GB of RAM and an ATI
Radeon HD 2400 Pro low-end graphic card. In the case of the usability study,
the test users were able to use their own desktop computers.

We ran two experiments to evaluate the reasoning scalability by comparing
our probabilistic approach to classical FOL reasoning, using EYE as underly-
ing technology in both experiments. Firstly, we performed reasoning on 50 Greek
pottery objects of different shapes and with different sized annotation sets (rang-
ing from 10k to 100k triples). Secondly, we fixed the number of triples to 1 million
and generated a diverse range of Greek pottery shape types (1 to 10). Fig. 7 de-
picts the results of both experiments. As can be observed from the results, our
approach has outperformed the FOL reasoning, despite both approaches pro-
ducing the same reasoning result. In the first case there is a linear dependency
between the size of the annotation set for the 3D object and the time required
to complete the reasoning. Unfortunately, neither approach achieves tolerable
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Fig. 7. Comparison of performance speed: FOL vs. our approach

Table 1. Experimental results achieved by arbitrarily switching statements in the
domain rules

Original rules Altered rules

Object / rule-set FOL Our approach FOL Our approach

1 0.078 s 0s 2.344s 0s

10 0.078s 0.015s 18.422s 0s

20 0.125s 0.016s 27.657s 0.016s

30 0.172s 0.016s 28.813s 0.015s

40 0.172s 0.016s 28.578s 0.015s

50 0.172s 0.016s 28.828s 0.015s

performance, however our approach is faster on average by around 49%. In the
second experiment, the difference is much clearer and ranges from double the
speed to an improvement of up to two orders of magnitude.

An interesting discovery within this experiment has been that the classical
FOL reasoning is sensitive to the ordering of the statements in the rules. We
have identified this aspect by arbitrarily switching two statements in the rule that
corresponded with each Greek pottery shape (see Table 1). The time required for
the FOL inference increases dramatically, even for a small dataset of 500 triples.
This is due to EYE’s backward chaining, which is a goal-driven method and
therefore sensitive to goal ordering. If a sub-goal in violation does not fail early,
it backtracks to all previous sub-goals, which prolongs the time of inference. On
the other hand, our approach has not been affected since our complex rules are
divided into a set of elementary units, and hence, the amount of backtracking
is greatly reduced. This issue will have a significant impact on rule creation if
an FOL approach is employed. Museum experts would have to take extra care
when ordering the statements that define the rules.

In the second type of experiment, we evaluated the precision of the two ap-
proaches by randomly removing annotations attached to different parts of 100
Greek pottery objects and running the inference on the incomplete dataset. The
results were remarkable: FOL achieved a precision of merely 19%, while our ap-
proach, at K=1 (i.e., top result) achieved a precision of 97%, thus proving both



Reasoning on Crowd-Sourced Semantic Annotations 239

the superiority as well as the versatility of using probabilistic reasoning. The
reason behind the poor results of FOL lies in its hard constraint nature, which
prevents it from producing any results at all, even when only a single statement
in a rule is violated. The correct results are found only because the correspond-
ing matching rules are not affected by the missing triples (removed during the
experiment). Our approach, on the other hand, is able to deal successfully with
missing information, as each triple removed makes the possible candidates less
likely instead of marking them as false negatives. The main drawback of us-
ing this versatile inference is that it may produce false positives in the case of
closely related rules or when too many annotations are missing (or too many
incorrect annotations are provided). Overall, this experiment shows the supe-
riority of using probabilistic reasoning over classical FOL when dealing with
semantic annotations with characteristics similar to those obtainable through
crowd-sourcing and well-established domain-specific rule sets.

Finally, we performed a usability study with 18 users (postgraduate researchers,
museum curators and educators) from a range of disciplines (Anthropology, Ar-
chaeology and Classics) at the University of Queensland. The test users were
given a set of six 3D objects and asked to manually identify the closest matching
shape/vase from a reference set of images. They were then requested to use the
3DSA reasoning capability and select the most suitable shape from the reason-
ing result. At the completion of those two tasks, the test users were requested to
complete a survey and were encouraged to provide verbal feedback.

The survey results indicate that 50% of users found the manual cataloguing of
3D objects to be extremely cumbersome, while all users agreed that the process
became very simple once reasoning had been applied. All test users found the
reasoning capability of 3DSA to be efficient – 63% very fast and 37% fast. Most
of the test users found it helpful to use the 3DSA semantic reasoning to assist
the cataloguing of Greek pottery 3D objects – 87% agrees and 13% neutral.

The feedback from the museum staff was highly encouraging. They found
3DSA extremely useful in classifying Greek pottery – especially for museum
curators without expertise in Greek pottery. In particular, they appreciated the
ranked results, which combined with their personal knowledge and expertise,
enabled them to catalogue an item very quickly. On a less positive note, our
application was less appealing to anthropologists, as they had doubts about the
usefulness of crowd-sourced semantic annotations in classifying ethnographic
collections. This is mainly due to the nature of their studies, which do not focus
on the individual interpretation of the features and decorations of the artefacts,
but rather on the method of creation, provenance and use of such objects.

6 Related Work

The increasing adoption of the Semantic Web into mainstream technologies has
led to a wide range of projects that use ontologies and reasoning to annotate
and infer new knowledge in the cultural heritage domain (or in other domains
that exploit 3D surrogates).
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The AIM@SHAPE project aimed at externalising and sharing the knowl-
edge captured within digital shapes via knowledge management techniques ap-
plied to shape modelling [12]. The semantics extracted (automatically or semi-
automatically) from 3D models has then been used for reasoning and retrieval
purposes. One of the projects use cases has been museum collections, e.g.,
scanned objects from The National Museum of Ethnology. The FOCUS K3D
project had similar goals and focused on automatic identification of 3D cultural
heritage objects, through reasoning based on manually acquired annotations [13].
Finally, the 3D-COFORM project enables the annotation of 3D cultural heritage
objects based on CIDOC-CRM standards [14]. Their Metadata Repository uses
OWLIM for rule-based reasoning to provide a more efficient retrieval of 3D ob-
jects [14]. The key difference between these approaches and our work, is that
we have applied probabilistic reasoning to infer high level semantic tags from
low-level features for 3D cultural heritage objects.

From a different perspective, the ArchaeoKM project [15] is a Web based
knowledge management system for archaeologists that supports semantic anno-
tations of 3D spatial data and uses ontologies to perform inference on the created
and presented knowledge. Objects are identified and tagged with concepts from
the domain ontology and rules are then employed to generate new knowledge. Ar-
chaeologists can create their own rules to validate or discover knowledge, which
is particularly useful for retrieving objects hard to classify but which posses
certain features.

Other approaches in the cultural heritage domain, not using 3D surrogates,
include: (i) the CULTURESAMPO project – uses Jena to perform reasoning on
the explicit descriptions of museum objects with the aim of discovering hid-
den knowledge; for example, the place of manufacture or the usage of museum
objects [16]; (ii) The Gothenburg City Museum – uses BigOWLIM to integrate
and reason across multiple datasets (including DBpedia and Geonames, in ad-
dition to the PROTON, CIDOC-CRM and MAO ontologies); this results in a
rich search and browse experience beyond the specific knowledge externalised
by their museum collection [17]; (iii) the CHIP project developed in collabora-
tion with the Rijksmuseum Amsterdam the Art Recommender to infer artwork
features (e.g. creator, material, subject) and semantic relations between fea-
tures (e.g. broader/narrower, style, birth or death place) by taking into account
user preferences [6]; and (iv) the MultimediaN E-Culture project, which uses
ClioPatria [18] (a framework based on SWI-Prolog and a suite of Semantic Web
libraries) to perform reasoning based on rich semantic annotations, in order to
facilitate semantic search in large heterogeneous cultural heritage collections [19].

In the other domains, Bucher et al. [20] investigated the application of se-
mantic reasoning to 3D city models in CityGML, to classify buildings in terms
of shapes, symmetries and repetition. Similarly, the WiDOP project, designed
for the engineering domain [21], exploits reasoning capabilities to semantically
annotate 3D objects to match detected geometries with probable objects. Both
projects use SWRL rules to perform rule-based semantic inferencing. The ISReal
project [22] claims to be the first open and cross disciplinary 3D Internet research
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platform for intelligent 3D simulation of realities. It uses OWL-DL, Pellet and
the RDF relational reasoner STAR [23] to infer scene descriptions in XML3D us-
ing semantic annotations. Finally the Onto3D retrieval system [24] is a research
application that investigates retrieval of 3D objects. The project attempts to
add semantics to 3D objects by linking low-level features to high-level semantic
descriptions from WordNet. It uses SWRL rules to infer semantic properties of
3D objects and stores the results into a general ontology. The ontology is then
used to improve both text-based and content-based object retrieval.

Most of the above-described projects use reasoning to enhance content re-
trieval. The 3DSA system, on the other hand, investigates how cultural heritage
artefacts can be enriched through crowd-sourced semantic annotations, in addi-
tion to using a completely different approach to conduct reasoning on the result-
ing data. Furthermore, since we rely on collective knowledge acquisition, we are
required to deliver a versatile solution capable of dealing with noisy, ambiguous
and incomplete annotation – issues usually disregarded by previous approaches.
In terms of 2D compatibility, the dimensional differences of the graphical ob-
jects would not influence our reasoning approach, since our rule-based reasoning
solution is applicable to both 3D and high-resolution 2D scans. However, the
annotation and crowdsourcing components are specifically built to deal with
challenges that arise from manipulating 3D objects (e.g., rotate, pan and zoom)
and would, implicitly, require a re-design of 3DSA system in order to cater for
high-resolution 2D scans. Finally, our approach enables experts to define infer-
ence rules in a very simple and straightforward manner, abstracting completely
from the underlying reasoning framework.

The 3DSA system is a Web-based application for collaborative semantic an-
notation of parts and regions of 3D museum artefacts, similarly to native appli-
cations such as Tagg3D [25] and 3D-COFORM Integrated Viewer/Browser [26].
However, as far as we are aware, it is also the only application in this domain
to apply probabilistic reasoning on 3D segment-based annotations to assist with
the cataloguing of 3D cultural heritage artefacts.

7 Conclusion

In this paper, we have provided an overview of 3DSA – a Web-based semantic
annotation system for 3D digital surrogates in the cultural heritage domain –
and described the solution we have adopted to assist museum curators in cata-
loguing Greek vases. 3DSA enables the crowd-sourcing of semantic annotations,
using the Greek Vases Ontology. Furthermore, it provides a simple interface by
which museum experts can define domain-specific rules, which are then used
to perform probabilistic reasoning. The experimental results of our classification
mechanism are particularly encouraging and demonstrate the increased efficiency
and accuracy of our approach compared to classical rule-based reasoning.

Future work will focus on two particular challenges. Firstly, we will investigate
novel ways of encouraging lay users to take part in the collective annotation of
3D cultural heritage artefacts. At the same time, we will incorporate active
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learning techniques to detect and improve the correctness of the crowd-sourced
annotations. Secondly, we intend to deploy the 3DSA system in other domains
and evaluate its inference capabilities in contexts that are not as well defined as
the current application use case.
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