Ontology and Database Systems: Foundations of Database Systems
Part 1: Databases and Queries

Werner Nutt

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2013/2014
Relational Databases: Principles

A database has two parts: **schema** and **instance**

The schema describes *how data is organized*:
- relations with their names, arity, and names and types of attributes
- integrity constraints like key and foreign key constraints, functional dependencies, inclusion dependencies, domain constraints

The instance contains the *actual data*:
- for every relation, there is a relation instance
- the relation instance is a set (multiset?) of tuples of the right arity and type

Often, we ignore types and integrity constraints

Sometimes, we ignore also the attribute names
Example Schema: Students and Courses

Relation schemas

Student(sid: INTEGER, sname: STRING, city: STRING, age: INTEGER)
Course(cid: INTEGER, cname: STRING, faculty: STRING)
Enrolled(sid: INTEGER, cid: INTEGER, aY: STRING, mark: STRING)

Integrity constraints

- Primary keys
 Student(sid)
 Course(cid)
 Enrolled(sid, cid, aY)
- Foreign keys:
 Enrolled(sid) references Student(sid)
 Enrolled(cid) references Course(cid)
Schemas: Formalization

A relation schema consists of
- a relation name
- an ordered list of attributes, possibly with types

Abstract notation $R(A_1, \ldots, A_n)$, or $R(A_1: \tau_1, \ldots, A_n: \tau_n)$

The arity of R, written $\text{ary}(R)$, is the number of arguments of R

A database schema S consists of
- a signature Σ, which is a set of relation schemas
- a set Γ of integrity constraints over Σ, which may be expressed as formulas in first-order logic (FOL)

Simplified notation: $S = \{R_1, \ldots, R_m\}$, or $S = \{R_1/n_1, \ldots, R_m/n_m\}$, (i.e., we only mention the names, or the names with their arity)

Exercise: Express the primary and foreign key constraints in the Students and Courses schema by FOL formulas
Domain: Formalization

We assume there is an infinite set of constants dom, called the domain domain.

When we ignore types, we do not make any assumptions about the constants in dom.

Otherwise, $\text{dom} = \bigcup_{i=1}^{k} \tau_i$, where τ_1, \ldots, τ_k are the types.

Definition

A type τ with an order "$<$" is an ordered type. The order "$<$" is

- dense if for every $a, b \in \tau$ with $a < b$, there is a $c \in \tau$ such that $a < c < b$.
- discrete if for every $a, b \in \tau$ with $a < b$, there are at most finitely many c such that $a < c < b$.

Example

Consider integers, reals, strings, and booleans.
Which type has a dense and which a discrete ordering?
Relation Instances

Relation R with arity n:
- an instance of R is a finite set of n-tuples over dom

Relation R with schema $R(A_1: \tau_1, \ldots, A_n: \tau_n)$:
- as before, plus the components of the n-tuples in an instance have to be of the right type
Schema Instances

An **instance of the signature** Σ is a function I that
- maps every $R \in \Sigma$ to an instance of R, denoted $I(R)$

Every instance I of Σ can be seen as a **first-order interpretation/structure** (also denoted I):
- domain of I is $\Delta^I = \text{dom}$
- $c^I = c$, for every $c \in \text{dom}$
 (proper names, i.e., every constant is interpreted as itself)
- $R^I = I(R)$

A function I is an **instance of the schema** $\mathcal{S} = (\Sigma, \Gamma)$ if
- I is an instance of Σ
- I satisfies every integrity constraint $\gamma \in \Gamma$ in the sense of first-order logic (FOL)
Logic Programming Perspectice

Often an alternate definition of instances is helpful

Definition

- A *fact* over a relation R with arity n is an expression $R(a_1, \ldots, a_n)$, where $a_1, \ldots, a_n \in \text{dom}$
- A *relation instance* is a finite set of facts over R
- A *signature instance* I of Σ is a finite set of facts over the relations in Σ

Example

$I_{\text{univ}} = \{ \text{Student}(123, \text{Egger}, \text{Bozen}, 25), \text{Student}(777, \text{Hussein}, \text{Dresden}, 23), \\
\text{Course}(104, \text{Programming}, \text{CS}), \text{Course}(106, \text{Databases}, \text{CS}), \\
\text{Course}(217, \text{Optics}, \text{PHYS}) \\
\text{Enrolled}(123, 104, 11/12, \text{fail}), \text{Enrolled}(123, 104, 12/13, \text{fail}), \\
\text{Enrolled}(123, 104, 13/14, \text{pass}), \text{Enrolled}(123, 106, 12/13, \text{pass}), \\
\text{Enrolled}(777, 217, 12/13, \text{pass}) \}$
Relational Queries

A query over a schema S is:

- a **function** that maps every instance of S to a set of tuples such that:
 - all tuples have the same length ($=$ arity of the query)
 - tuple values at the same position have the same type

- a **piece of syntax** that defines such a function

Query languages are/should be **declarative**:

- you express what you want to know, not how to compute it
 (a query engine analyzes the query and creates an execution plan)
Relational Query Languages

- Theoretical languages
 - Relational Algebra (that’s how Codd started it)
 - Relational Calculus (= FOL in essence)
 - Datalog (drops negation, adds recursion)

- Commercial language: SQL
 - Relational Calculus (at its core)
 + Relational Algebra
 + a bit of Datalog (implemented in IBM DB2, Microsoft SQL Server)
 + aggregates, arithmetic, nulls, . . . , functions, procedures
Relational Algebra

Expressions E are built up from

- relation symbols R

using the operators

- union $(E_1 \cup E_2)$, intersection $(E_1 \cap E_2)$, set difference $(E_1 \setminus E_2)$, called boolean operators
- selection $\sigma_C(E)$
- projection $\pi_X(E)$
- cartesian product $E_1 \times E_2$
- join $E_1 \bowtie_C E_2$
- attribute renaming $(\rho_{A\leftarrow B}(E))$

where C is a condition involving equalities and comparisons between attributes and constants, and X is a set of attributes of E

For an instance I, an expression E is evaluated as a set of tuples $E(I)$

A query is an expression
Relational Algebra: Remarks

- An operator not only returns a set of tuples as the result, but also a schema for the result.

- Operators that mention attributes can only be applied to expressions that have that attribute in their schema.

- Boolean operators can only be applied to expressions with the same schema.
Relational Algebra: Examples

What is the meaning of the following queries?

- $\sigma_{\text{city}=\text{Bozen} \land \text{age} > 21} (\text{Student})$

- $\pi_{\text{cname}, \text{faculty}} (\text{Course})$

- $\pi_{\text{cname}} (\text{Course} \land \text{Course.cid} = \text{Enrolled.cid} \text{ Enrolled})$

- $\pi_{\text{sid}} (\text{Student}) \setminus \pi_{\text{sid}} (\text{Enrolled})$
Relational Algebra: Exercise

Express the following queries over our university schema in Relational Algebra

- What are the names of the courses for which student Egger has failed an exam?
- Which students have failed an exam for the same course at least twice?
- Which students have never failed an exam in Physics?

Evaluate the expressions over the instance I_{univ}
Relational Calculus Queries

Definition

A *query* in (domain) relational calculus (RelCalc) has the form

\[Q = \{ (x_1, \ldots, x_n) \mid \phi \} \]

where

- \(\phi \) is a predicate logic formula
- \(x_1, \ldots, x_n \) are the free variables of \(\phi \)

We say that

- \(\phi \) is the **body** of the query,
- \(x_1, \ldots, x_n \) are the **output variables**, and
- \(n \) is the **arity** of the query.

If the arity is not important, we write \(\bar{x} \) instead of \(x_1, \ldots, x_n \).

We sometimes write \(Q_\phi \) to denote the query defined by \(\phi \).
Reminder on Predicate Logic Formulas

A term is a constant or a variable.

An atom is an expression \(R(t_1, \ldots, t_n) \) where \(R \) is a relation symbol of arity \(n \) and \(t_1, \ldots, t_n \) are terms.

A formula \(F \) is an atom or has the form

- \((F_1 \land F_2), (F_1 \lor F_2), \text{ or } (F_1 \rightarrow F_2)\)
- \(\neg F\)
- \((\exists x F), (\forall x F)\)

where \(F, F_1, F_2 \) are formulas.

(Operators have the usual precedences. We drop parentheses that are not needed for the structure of a formula.)

Exercise (once the semantics has been defined):
Show that the logical symbols \(\land, \exists, \neg \) suffice to express all other symbols.
Equality and Built-in Predicates

Sometimes we use also the predicate symbols

```
“=” , “<” , “≤” , “≠”
```

Atoms with these symbols are called
- equalities ("=")
- comparisons ("<", "≤")
- disequalities ("≠")

Clearly, they can only be applied to terms of the same type

Comparisons can only be used for terms of a type that is ordered
Bound and Free Variables

Definition

- An occurrence of a variable x in formula ϕ is \textit{bound} if it is within the scope of a quantifier $\exists x$ or $\forall x$

- An occurrence of a variable in ϕ is \textit{free} iff it is not bound

- A variable of formula ϕ is \textit{free} if it has a free occurrence

Free variables specify the output of a query
Relational Calculus Queries: Semantics

In FOL, the semantics of a formula is defined in terms of *interpretations* and *assignments*. Recall:

- every instance I defines a first-order interpretation I
- an assignment is a mapping $\alpha: \text{var} \rightarrow \text{dom}$

There is a classical recursive definition of when an interpretation I and an assignment α satisfy a formula ϕ, written

$$ I, \alpha \models \phi, $$

which we take for granted

Definition

Let $Q = \{(x_1, \ldots, x_n) \mid \phi\}$ be a query. We define the *answer* of Q over I as

$$Q(I) = \{\alpha(\bar{x}) \mid I, \alpha \models \phi\}.$$
Exercise

Express the following queries over our university schema in Relational Calculus

- Which are the names of students that have passed an exam in CS?
- Which students (given by their id) have never failed an exam in CS?
- Which students (given by their id) have passed the exams for all courses in CS?

Evaluate the expressions over the instance I_{univ}