Information Integration

Part 3: Information Integration Models

Werner Nutt

Faculty of Computer Science Master of Science in Computer Science

A.Y. 2011/2012

FREIE UNIVERSITÄT BOZEN

LIBERA UNIVERSITÀ DI BOLZANO

FREE UNIVERSITY OF BOZEN - BOLZANO

Information Integration

Il has the aim to provide **uniform access** to data that are stored in **a number** of **autonomous and heterogeneous** sources:

- different data models (structured, semi-structured, text)
- different schemata
- differences in the representation of values (km vs. miles, USD vs. EUR) and entities (addresses, dates, etc.)
- inconsistencies among the data

Il is a basic problem in

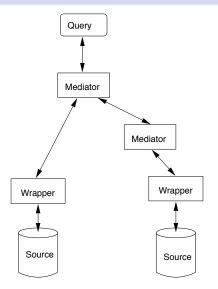
- Data Warehousing, Data Re-engineering
- Integration of data from scientific experiments
- E-commerce: Harvesting data on the Web

Architecture of a Mediator-based II System

The system generates an integrated, uniform view of a collection of sources

- Queries are formulated over a global schema domain model, domain schema, "mediated schema", ontology, enterprise model, ...
- Wrappers (= cover, envelop, encase)
 make sources accessible
- Mediators translate queries, combine answers of wrappers and mediators, resolve contradictions

Information Integration: Scenario



Movie Info: Global Schema [Idea by A. Halevy]

Movie(title, director, year, genre, rating)

Starring(title, actor)

Artist(name, yob, country)

Plays(title, language, cinema, startTime)

Cinema(cinema, location)

Review(title, rating, description)

Movie Info: Queries Over the Global Schema

• "Which films with Johnny Depp are shown in Bolzano at which time?"

$$Q(t,st) := \mathtt{Starring}(t, '\mathtt{Johnny Depp'}), \mathtt{Plays}(t,l,c,st),$$

$$\mathtt{Cinema}(c, '\mathtt{Bolzano'})$$

 "Which thrillers by an Italian director are shown in Bolzano at which time?"

$$Q(t, st) := Movie(t, d, y, 'Thriller'), Artist(d, 'Italy'),$$

$$Plays(t, l, c, st), Cinema(c, 'Bolzano')$$

Movie Info: Sources

Website Cineplexx Cinema, Bozen

```
CineplexxShowing(title, language, startTime)
CineplexxDetails(title, director, genre)
CineplexxCast(title, actor)
```

• Website Filmclub Cinema, Bozen

Filmclub(title, language, director, startTime)

Website Kinoliste

Kinoliste(city, cinema)

Internet Movie Database

```
ImdbActor(name, yob)
```

ImdbStarring(name, title)

ImdbFilm1(title, stars, genre, director, year)

ImdbFilm2(title, actor)

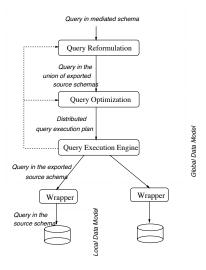
ImdbReview(title, stars, description)
• Website Kino München

KinoMuenchen(cinema, title, startTime)

Approaches to II

- What does the II system contain?
 - ⇒ virtual vs. materialized integration
- Which operations are allowed on the global schema?
 - ⇒ **Read** vs. Read and Write
- How is the II system specified?
 - ⇒ procedurally vs. declaratively
- How do we model the connection between sources and global schema?
 - ⇒ global schema in terms of the sources vs. sources in terms of the global schema

Architecture of a Virtual Integration System



(8/97)

Questions about II [M. Lenzerini]

- How to construct the global schema
- (Automatic) source wrapping
- How to express mappings between sources and global schema
- How to discover mappings between sources and global schema
- How to deal with limitations in mechanisms for accessing sources
- Data extraction, cleaning, and reconciliation
- How to model the global schema, the sources, and the mappings
- How to answer queries expressed on the global schema
- How to exchange data according to the mappings
- How to optimize query answering
- How to process updates expressed on the global schema and/or the sources (read/write vs. read-only data integration)

Questions about II [M. Lenzerini]

- How to construct the global schema
- (Automatic) source wrapping
- How to express mappings between sources and global schema
- How to discover mappings between sources and global schema
- How to deal with limitations in mechanisms for accessing sources
- Data extraction, cleaning, and reconciliation
- How to model the global schema, the sources, and the mappings
- How to answer queries expressed on the global schema
- How to exchange data according to the mappings
- How to optimize query answering
- How to process updates expressed on the global schema and/or the sources (read/write vs. read-only data integration)

The Mediator (1)

The mediator

- provides an integrated access to the information sources
- hides the sources
- creates the illusion to query a unique database
- → the mediator presents to the user a virtual db
- the virtual db is presented by a schema: the global or mediated schema

Depending on the application, several data models are possible: relational, XML, description logics

Here: the global schema is a relational schema

The Mediator (2)

Function

- accepts a query over the global schema
- reformulates the query into queries over the sources
- determines an execution plan: in which order will the queries be posed over the sources?

```
(information flow size of the expected answers, expected speed of the answer)
```

- sends queries to the sources (= wrappers)
- collects and combines the answers
- changes the plan during run time

Modeling the Information Content of Sources

2 approaches of mapping source schemas and global schema

Relations in the global schema are views of the sources:
 "global as view" (GAV)

traditional concept of a view

- Views are virtual relations the global schema describes a virtual DB
- Relations in the sources are views of the global schema: "local as view" (LAV)

apparently nonsensical

 sources are materialized views of a db, which is not accessible itself

There is also a combination of the two, called GLAV

Logical Query Planning

In a standard database setting (centralized or distributed):

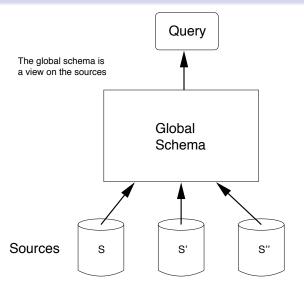
- Given: a declarative query over the logical schema
- Wanted: a sequence of operations for retrieving data, operating on the physical schema:

the **execution** plan

In information integration:

- Given: a declarative query over the global schema
- Wanted: an "equivalent" declarative query over the local schemas:
 the logical plan
- The logical plan can be transformed into an execution plan with (more or less) standard techniques

Global as View: Idea



Global as View: Example (1) [J. Ullman]

Sources: S_1 , S_2 , S_3 contain info on *employees* e, *phone numbers* p, *managers* m, *offices* o, *departments* d. Thus, the source schema is:

$$S_1(e, p, m)$$
 $S_2(e, o, d)$ $S_3(e, p)$,

where variable names indicate the meaning of the positions.

Global Schema: We combine the three sources into a global schema with the two relations EPO and EDM:

$$\mathtt{EPO}(e, p, o) := \mathtt{S}_1(e, p, m), \ \mathtt{S}_2(e, o, d)$$

$$EPO(e, p, o) := S_3(e, p), S_2(e, o, d)$$

$$\mathtt{EDM}(e,d,m) := \mathtt{S}_1(e,p,m), \, \mathtt{S}_2(e,o,d)$$

EPO und EDM are described by views on the sources

Global as View: Example (2)

Query 1: "What are Sally's phone and office?"

$$Q_1(p,o) := \text{EPO}(\text{'Sally'}, p, o)$$

We obtain a plan P_1 for Q_1 if we expand the body of Q_1 , by unfolding the predicate EPO:

$$\begin{split} P_1(p,o) &:= \mathtt{S}_1(\,{}'\mathit{Sally'},p,m),\,\mathtt{S}_2(\,{}'\mathit{Sally'},o,d) \\ P_1(p,o) &:= \mathtt{S}_3(\,{}'\mathit{Sally'},p),\,\mathtt{S}_2(\,{}'\mathit{Sally'},o,d) \end{split}$$

Global as View: Example (3)

Query 2: "What are Sally's office and department?"

$$Q_2(o,d) := \text{EPO}('Sally', p, o), \text{ EDM}('Sally', d, m)$$

Again, if we expand the body of Q_2 unfolding the definitions of EPO and EDM, we obtain a plan P_2 for Q_2 :

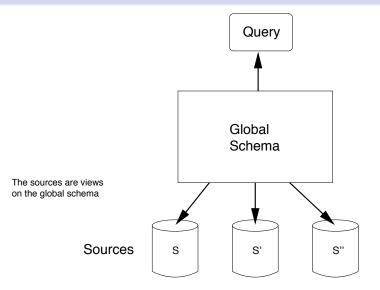
$$P_2(o,d) := S_1('Sally', p1, m1), S_2('Sally', o, d),$$

 $S_1('Sally', p2, m2), S_2('Sally', o, d),$
 $P_2(o,d) := S_3('Sally', p1), S_2('Sally', o, d),$
 $S_1('Sally', p2, m), S_2('Sally', o, d)$

But: Wouldn't a single plan be sufficient

$$P_2'(o,d) := S_2('Sally',o,d)$$
?

Local as View: Idea



Local as View: Example (1)

Sources: Again, we have the same three sources S_1 , S_2 , S_3 :

$$S_1(e, p, m)$$
 $S_2(e, o, d)$ $S_3(e, p)$

Global Schema: We model the application domain by five relations:

- Emp(e): e is an employee
- Phone(e, p): e has phone number p
- Office(e,o): e has office o
- Mgr(e, m): m is e's manager
- Dept(e, d): d is e's department

Local as View: Example (2)

Source Descriptions: We describe the sources as being included in views on the global schema:

$$\mathtt{S}_1\subseteq V_1 \qquad \mathtt{S}_2\subseteq V_2 \qquad \mathtt{S}_3\subseteq V_3.$$

The views have the following definitions:

$$egin{aligned} V_1(e,p,m) &:= \mathtt{Emp}(e), \, \mathtt{Phone}(e,p), \, \mathtt{Mgr}(e,m) \ V_2(e,o,d) &:= \mathtt{Emp}(e), \, \mathtt{Office}(e,o), \, \mathtt{Dept}(e,d) \ V_3(e,p) &:= \mathtt{Emp}(e), \, \mathtt{Phone}(e,p) \end{aligned}$$

Local as View: Example (3)

Query 3: "What are Sally's phone and office?"

$$Q_3(p,o) := Phone('Sally',p), Office('Sally',p)$$

Problem: No source contains complete information about phone numbers and offices. Moreover, the information we are looking for is always combined with other information.

Idea: Use the views to construct queries that are equivalent or more specific than Q_3 :

$$P_3(p, o) := V_1('Sally', p, m), V_2('Sally', o, d)$$

 $P_3(p, o) := V_3('Sally', p), V_2('Sally', o, d).$

How can we test that P_3 is equivalent to or more specific than Q_3 ?

→ Unfold the views!

Local as View: Example (4)

Unfolding: We use the superscript \cdot^{unf} to indicate unfolding using definitions:

$$\begin{split} P_3^{unf}(p,o) \coloneqq & \texttt{Emp}(\textit{'Sally'}), \, \texttt{Phone}(\textit{'Sally'},p), \, \texttt{Mgr}(\textit{'Sally'},d), \\ & \texttt{Emp}(\textit{'Sally'}), \, \texttt{Office}(\textit{'Sally'},o), \, \texttt{Dept}(\textit{'Sally'},d) \end{split}$$

$$\begin{split} P_{3}^{unf}(p,o) \coloneqq & \texttt{Emp}(\, 'Sally'), \, \texttt{Phone}(\, 'Sally',p), \\ & \texttt{Emp}(\, 'Sally'), \, \texttt{Office}(\, 'Sally',o), \, \texttt{Dept}(\, 'Sally',d) \end{split}$$

Each rule of P_3^{unf} has "more" (in the sense of " \supseteq ") conditions than Q_3 :

- $\Rightarrow Q_3$ contains each rule of P_3^{unf}
- \Rightarrow Q_3 contains P_3^{unf}

Local as View: Example (5)

Query 4: "What are Sally's office and department?"

$$Q_4(o,d) := \mathsf{Office}(\mathit{'Sally'},o), \, \mathsf{Dept}(\mathit{'Sally'},d)$$

Office and departments are only mentioned in V_2 . Hence:

$$P_4(o,d) := V_2('Sally',o,d)$$

Unfolding:

$$P_4^{unf}(o,d) := \text{Emp}('Sally'), \, \text{Office}('Sally',o), \, \text{Dept}('Sally',d)$$

Again, the plan is contained in the query, thus okay ...

Global as View vs. Local as View

Global as View:

- + query reformulation is **simple**: unfold (. . . and simplify!)
- + **abstracts** from *irrelevant information* in the sources (e.g., can forget attributes)
- changes in the sources affect the global schema
- connections between the sources
 need to be taken into account when setting up the schema
 ("query reformulation at design time")

Local as View:

- + modularity and reusability:
 - when a source changes, only its description needs to be changed
- + connections between the sources can be inferred
- query processing is difficult: "query reformulation at run time"

Questions

We started with queries Q over the global schema and transformed them to queries Q^\prime over the sources

Are these transformations

- correct? that is, are all answers to Q' also answers to Q?
- complete? that is, will Q' retrieve all (sensible) answers for Q?
- generally computable?
- \sim What at all are answers for Q?

Information Integration Systems

Here: formal framework for

- defining the problems of II (= information integration)
- developing and comparing techniques
- comparing approaches

Ideas:

- sources are accessed by means of a global schema G, which describes a virtual db
- the instance **J** of the virtual db is *unknown*
- ullet the source instance ${f I}$ restricts the possible global instances ${f J}$
 - → how can one model the connection between sources and virtual db?
- \rightarrow Queries over \mathcal{G} must be answered with incomplete information

Incomplete Information

Schema

```
Person(fname, surname, city, street)
City(cname, population)
```

We know

- Mair lives in Bozen (but we don't know first name and street)
- Carlo Rossi lives in Bozen (but we don't know the street)
- Mair and Carlo Rossi live in the same street (but we don't know which)
- Maria Pichler lives in Brixen
- Bozen has a population of 100,500
- Brixen has a population < 100,000 (but we don't known the number)

Queries

- Return first name and surname of people living in Bozen!
- 2 Return the surnames of people living in Bozen!
- Who (surname) is living in the same street as Mair?
- Which people are living in a city with less than 100,000 inhabitants?

Incomplete Information: Questions

How can we represent this info?

- What does the representation look like?
- What is its meaning?
- What answers should the queries return?
- How can we define the semantics of queries?

Modeling Incomplete Information: SQL Nulls

Person

fname	surname	city	street
NULL	Mair	Bozen	NULL
Carlo	Rossi	Bozen	NULL
Maria	Pichler	Brixen	NULL

City

cname	population	
Bozen	100,500	
Brixen	NULL	

Intuitive meaning of NULL: one of

- (i) does not exist
- (ii) exists, but is unknown
- (iii) unknown whether (i) or (ii)

SQL Nulls: Formal Semantics

- dom (or, equivalenty, every type) is extended by a new value: NULL
- built-in predicates are evaluated according to a 3-valued logic with truth values false < unknown < true
- atoms with NULL evaluate to unknown
- Boolean operations:
 - AND/OR correspond to min/max on truth values
 - NOT extends the classical definition by NOT(unknown) = unknown
- additional operation ISNULL(\cdot) with ISNULL(v) = true iff v is NULL
- a query returns those tuples for which query conditions evaluate to true

SQL Nulls: Example Queries

- Query 1 returns (NULL, Mair) and (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Queries 3 and 4 return nothing

Representation Systems [Imieliński/Lipski, 1984]

Distinguish between

- semantic instances, which are the ones we know
- syntactic instances, which contain tuples with variables (written \perp_1, \perp_2, \ldots)

A syntactic instance represents many semantic instances

Syntactic instances are called multi-tables (i.e., several tables).

There are three kinds of (multi-)tables:

Codd Tables: a variable occurs no more than once

Naive or Variable Tables: a variable can occur several times

Conditional Tables: variable table where each tuple \bar{t} is tagged with a boolean combination $cond(\bar{t})$ of built-in atoms

Short names: table, v-table, c-table

Semantics of Tables

Let **T** be a multi-table with variables $var(\mathbf{T})$.

For an assignement α : $var(\mathbf{T}) \rightarrow \mathbf{dom}$ we define

$$\alpha \mathbf{T} = \{ \alpha \, \overline{t} \mid \overline{t} \in \mathbf{T}, \ \alpha \models cond(\overline{t}) \}$$

Then **T** represents the infinite sets of instances

$$rep(\mathbf{T}) = \{ \alpha \mathbf{T} \mid \alpha \colon var(\mathbf{T}) \to \mathbf{dom} \}$$

 $Rep(\mathbf{T}) = \{ \mathbf{J} \mid \mathbf{I} \subseteq \mathbf{J} \text{ for some } \mathbf{I} \in rep(\mathbf{T}) \}$

where

 $rep(\mathbf{T})$ is the *closed-world* interpretation of \mathbf{T}

 $Rep(\mathbf{T})$ is the *open-world* interpretation of \mathbf{T}

(Many results hold for both, the closed-world and the open-world interpretation. We assume open-world interpretation if not said otherwise.)

Certain and Possible Answers

Given **T** and a query Q, the tuple \bar{c} is

- a certain answer (for Q over ${\bf T}$) if \bar{c} is returned by Q over all instances represented by ${\bf T}$
- $oldsymbol{ar{c}}$ is returned by Q over some instance represented by ${f T}$

We denote the set of all certain answers as $cert_{\mathbf{T}}(Q)$.

We have

$$\mathit{cert}_{\mathsf{T}}(Q) = \bigcap_{\mathbf{J} \in \mathit{Rep}(\mathsf{T})} Q(\mathbf{J})$$

Modeling Incomplete Information: Codd-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	⊥3
Maria	Pichler	Brixen	⊥4

City

cname	population
Bozen	100,500
Brixen	⊥ ₅

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair
- Query 4 returns nothing

Modeling Incomplete Information: v-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	\perp_2
Maria	Pichler	Brixen	⊥ ₄

City

cname	population
Bozen	100,500
Brixen	\perp_5

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair and Rossi
- Query 4 returns nothing

Modeling Incomplete Information: v-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	\perp_2
Maria	Pichler	Brixen	⊥4

City

cname	population	cond
Bozen	100,500	true
Brixen	\perp_5	$\perp_5 < 100,000$

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair and Rossi
- Query 4 returns Pichler

Strong Representation Systems

Definition

Let Q be a query and ${\bf T}$ be a table. Then

$$Q(\mathbf{T}) := \{Q(\mathbf{I}) \mid \mathbf{I} \in rep(\mathbf{T})\}$$

That is, $Q(\mathbf{T})$ contains the relation instances obtained by applying Q individually to each instance represented by \mathbf{T} .

Note: $Q(\mathbf{T})$ is a set of sets of tuples, not a set of tuples!

Strong Representation Systems (cont)

Theorem (Imieliński/Lipski)

For every relational algebra query Q and every c-table ${f T}$ one can compute a c-table T such that

$$rep(\widetilde{\mathbf{T}}) = Q(\mathbf{T})$$

That is,

- T can be considered the answer of Q over T
- the result of querying a c-table can be represented by a c-table

The downside:

handling of c-tables is intractable: the membership problem " $\mathbf{I} \in rep(\mathbf{T})$ "? is NP-hard

• the c-tables **T** may be very large

Weak Representation Systems: Motivation

Let $T_{\rm v}$ be our example v-table and consider

$$egin{aligned} Q_0 &= \sigma_{ exttt{city='Bozen'}}(exttt{Person}), \ Q_1 &= \pi_{ exttt{sname}}(\sigma_{ exttt{city='Bozen'}}(exttt{Person})) \end{aligned}$$

Then:
$$cert_{\mathsf{T}_{\mathrm{v}}}(Q_0) = \{\mathsf{Mair}\}$$
 and $cert_{\mathsf{T}_{\mathrm{v}}}(Q_1) = \{\mathsf{Mair},\,\mathsf{Rossi}\}$

Observation:
$$Q_0=\pi_{\mathtt{sname}}(Q_1),$$
 but $\mathit{cert}_{\mathsf{T}_{\mathtt{v}}}(Q_0)$ cannot be computed from $\mathit{cert}_{\mathsf{T}_{\mathtt{v}}}(Q_1)$

Compositionality is violated! Better keep the nulls!

Idea: Try to keep enough information for representing certain answers!

Incomplete Databases: Definition

Definition (Incomplete Database)

An **incomplete database** is a set of instances $(\mathcal{I}, \mathcal{J})$.

For a query Q and an incomplete db $\mathcal{I},$ the set of certain answers for Q over \mathcal{I} is

$$\mathit{cert}_{\mathcal{I}}(Q) := \bigcap_{\mathbf{I} \in \mathcal{I}} Q(\mathbf{I}).$$

Weak Representation Systems

Let $\mathcal L$ be a query language (e.g., conjunctive queries, positive queries, positive relational algebra)

Definition (*L*-Equivalence)

Two incomplete databases \mathcal{I} , \mathcal{J} are \mathcal{L} -equivalent, denoted $\mathcal{I} \equiv_{\mathcal{L}} \mathcal{J}$, if for each $Q \in \mathcal{L}$ we have

$$cert_{\mathcal{I}}(Q) = cert_{\mathcal{J}}(Q)$$

That is, \mathcal{L} -equivalent incomplete dbs give rise to the same certain answers for all queries in \mathcal{L} .

Goal: For Q and \mathbf{T} , find a \mathbf{T}' such that \mathbf{T}' is \mathcal{L} -equivalent to $Q(Rep(\mathbf{T}))$, for a suitable \mathcal{L}

Weak Representation Systems (cntd)

 $\mathcal{L}_{\mathsf{calc}}^+$ language of positive relational calculus queries

Theorem (Imielinski/Lipski)

For every positive query Q and v-table \mathbf{T} , one can compute a v-table \mathbf{T}' such that

$$\mathit{Rep}(\mathbf{T}') \equiv_{\mathcal{L}^+_{\mathsf{calc}}} \mathit{Q}(\mathit{Rep}(\mathbf{T}))$$

Proof.

Apply Q to \mathbf{T} , treating variables like constants.

That is, \mathbf{T}'

- contains enough information to compute certain answers to positive queries on $Q(Rep(\mathbf{T}))$
- can be considered the answer of Q over T, in the context of positive queries

Source Descriptions in GLAV

GLAV combines the approaches "global as view" and "local as view"

The components are two schemas

- \mathcal{G} , the domain or global schema $(R \in \Sigma_{\mathcal{G}}, \text{ or } R \in \mathcal{G} \text{ (by abuse of notation)})$
- \mathcal{L} , the source or local schema $(S \in \Sigma_{\mathcal{L}}, \text{ or } S \in \mathcal{L} (\dots))$

and two sets of views (= relations defined by queries)

- W, the domain or global views $(W \in W)$
- V, the source or local views $(V \in V)$

Here: no assumptions about the query languages of the views

Later: Investigate the effects of the choice of language

Information Integration System (formally ...)

• An information integration system (IIS) $\mathcal{I} = (\mathcal{G}, \mathcal{L}, \mathcal{M})$ is given by two schemas \mathcal{G} and \mathcal{L} and a set \mathcal{M} of mappings

$$V \subseteq W$$
 or $V = W$

involving source views V and domain views W

- A domain instance J interprets symbols $R \in \mathcal{G}$ and domain views $W \in \mathcal{W}$ as relations J(R) and J(W), resp.
- A source instance I interprets symbols $S \in \mathcal{L}$ und source views $V \in \mathcal{V}$ as relations I(S) and I(V), resp.
- A domain instance J is compatible with a source instance I if

$$\mathbf{I}(V) \subseteq \mathbf{J}(W)$$
 or $\mathbf{I}(V) = \mathbf{J}(W)$,

for every constraint $V\subseteq W$ or V=W, resp.

Special Case "Global as View"

- Domain views = global relations, that is, $W_R(\bar{x}) := R(\bar{x})$
- per domain relation, there is exactly one source view, that is,

$$\mathcal{M} = \{ V_R \ \rho_R \ R \mid R \in \mathcal{G} \}$$
 where $\rho_R \in \{ \subseteq, = \}$

" $V_R \subseteq R$ ": the mapping of R is sound

" $V_R = R$ ": the mapping of R is exact

Notation: Given a source instance I, we define

$$\mathcal{V}(\mathbf{I}) := \{ R(\bar{t}) \mid t \in V_R(\mathbf{I}), \ R \in \mathcal{G} \},\$$

the tuples mapped from I by the local views ${\mathcal V}$ to the global schema ${\mathcal G}$

Observation: J is compatible with I iff

$$\mathcal{V}(\mathbf{I}) \subseteq \mathbf{J}$$
 if all mappings are *sound*

V(I) = J if all mappings are *exact*

Special Case "Local as View"

- Source views = local relations, that is, $V_S(\bar{x}) := S(\bar{x})$
- per source relation, there is exactly one domain view, that is,

$$\mathcal{M} = \{ S \ \rho_S \ W_S \mid S \in \mathcal{L} \}$$
 where $\rho_S \in \{ \subseteq, = \}$

" $S \subseteq W_S$ ": the mapping of R is sound

" $S = W_S$ ": the mapping of R is **exact**

Notation: Given a domain instance J, we define

$$W(\mathbf{J}) := \{ S(\bar{t}) \mid t \in W_S(\mathbf{J}), S \in \mathcal{L} \},$$

the tuples mapped from ${f J}$ by the global views ${\cal W}$ to the local schema ${\cal L}$

Observation: J is compatible with I iff

 $\mathbf{I} \subseteq \mathcal{W}(\mathbf{J})$ if all mappings are sound

$$I = \mathcal{W}(J)$$
 if all mappings are exact

Certain Answers

Let $\ \mathcal{M} = \{V_i \ \rho_i \ W_i \mid i=1,\dots,n\}$ be the set of mappings of an IIS

I a source instance

Q a query over \mathcal{G} (= the global schema)

Definition (Certain Answers)

A tuple \bar{d} ist a **certain answer** for Q w.r.t. \mathbf{I} if

$$\bar{d} \in Q(\mathbf{J})$$
 for alle \mathbf{J} compatible with \mathbf{I} .

The set of all certain answers for Q w.r.t. ${f I}$ is denoted as

$$cert_{\mathbf{I}}(Q)$$

Proposition

$$\operatorname{cert}_{\mathbf{I}}(Q) = \bigcap_{\mathbf{J} \text{ compatible with } \mathbf{I}} Q(\mathbf{J})$$

Certain Answers under GAV

Let $\mathcal{M} = \{V_R \subseteq /= R \mid R \in \mathcal{G}\}$ be a set of GAV mappings

I a source instance

Q a query over $\mathcal G$ (= the global schema)

 \rightsquigarrow When is a global instance J compatible with I?

Exact Mappings: V(I) = J

⇒ only one instance is compatible!

$$\Rightarrow cert_{\mathbf{I}}(Q) = Q(\mathcal{V}(\mathbf{I}))$$

Sound Mappings: $V(I) \subseteq J$

 \Rightarrow supersets of $\mathcal{V}(\mathbf{I})$ are compatible

 \rightsquigarrow do we still have $cert_{\mathbf{I}}(Q) = Q(\mathcal{V}(\mathbf{I}))$?

GAV with sound mappings:

unibz.it

(49/97)

J compatible with I iff $V(I) \subseteq J$

GAV with Exact Mappings

Definition (Monotonic Query)

A query Q is **monotonic** if for all instances I_1 , I_2 we have

$$\mathbf{I}_1 \subseteq \mathbf{I}_2 \quad \Rightarrow \quad Q(\mathbf{I}_1) \subseteq Q(\mathbf{I}_2)$$

- Datalog (= Horn clauses w/o function symbols) queries are monontonic
- Queries with negation are in general not monotonic

Proposition

Consider an IIS with exact GAV mappings and let Q be a query. Then:

$$Q \text{ monotonic} \Rightarrow cert_{\mathbf{I}}(Q) = Q(\mathcal{V}(\mathbf{I}))$$

If $cert_{\mathbf{I}}(Q) = Q(\mathcal{V}(\mathbf{I}))$, then we can compute the certain answers for Q by evaluating $Q' = Q \circ \mathcal{V}$ on the source instance I

 \rightarrow Q' is a "query plan" for Q

How Difficult is Finding Certain Answers under Exact LAV?

Example: LAV with exact mappings (Abiteboul/Duschka)

1. Global relations model a coloured graph:

Edge(X,Y): there is an edge from vertex X to vertex Y

Colour(X, Z): vertex X has colour Z

2. Source relations S_1 , S_2 , S_3 are mapped exactly by domain views W_1 , W_2 , W_3

$$\mathcal{M} = \{ S_1 = W_1, \ S_2 = W_2, \ S_3 = W_3 \},\$$

where

$$W_1(X) := \mathtt{Colour}(X,Y)$$

 $W_2(Y) := \mathtt{Colour}(X,Y)$
 $W_3(X,Y) := \mathtt{Edge}(X,Y).$

Thus, we have the vertices in S_1 , the colours in S_2 , the edges in S_3

Certain Answers under LAV? (Cont)

3. Source Instances.

Graph
$$G = (V, E)$$
 (V are the vertices, E the edges)

Define the source instance \mathbf{I}_G by

$$egin{aligned} \mathbf{I}_G(S_1) &:= V \ \mathbf{I}_G(S_2) &:= \{ \mathtt{red}, \ \mathtt{green}, \ \mathtt{blue} \} \ \mathbf{I}_G(S_3) &:= E. \end{aligned}$$

4. Compatible Instances.

A global instance ${f J}$ is compatible with ${f I}_G$ if

- ullet $\mathbf{J}(\mathtt{Edge})$ contains exactly the edges in E
- $oldsymbol{ iny J}(exttt{Colour})$ assigns to the vertices of G the colours red, green, blue

Certain Answers under LAV? (Cont)

5. Query.

$$Q() := Edge(X, Y), Colour(X, Z), Colour(Y, Z)$$

Q returns the answer () over ${f J}$ if and only if

 ${f J}$ contains neighbouring vertices X, Y with the same colour

6. Certain Answers.

Observe, "()" is a certain answer for Q wrt \mathbf{I}_G iff every colouring of G with three colours assigns the some colour to two neighbouring vertices

Thus: G is not 3-colourable iff $cert_{\mathbf{I}_G}(Q) = \{()\}$

Certain Answers under LAV? (Cont)

3-Colorability is NP-complete

7. Conclusion.

To decide whether a tuple is a certain answer under LAV is coNP-hard, if sources are mapped **exactly**.

This holds already for

- relational conjunctive queries and
- views defined by relational conjunctive queries.

And what if the sources are not mapped exactly?

Computing Certain Answers under LAV

GAV:

- \bullet certain answers for Q can in general be computed by evaluating a query Q' over the sources
- ullet Q' results from Q by a simple transformation

 \sim is that also possible for LAV?

Problem with LAV and exact mappings:

If: $cert_{\mathbf{I}}(Q)$ can be computed by evaluating a query Q' over the sources

Then: the problem " $\bar{d} \in cert_{\mathbf{I}}(Q)$ " is tractable (for a fixed Q)

(Evaluation of Datalog or PL1 queries is polynomial)

But: there is a conjunctive set of mappings $\mathcal M$ und a conjunctive query Q, such that " $\bar d \in \mathit{cert}_\mathbf I(Q)$ " is coNP-hard

GAV and LAV

The approach for GAV was:

- ullet find prototypical database instance ${f J}_0$
- evaluate Q over $\mathbf{J}_0 \longrightarrow cert_{\mathbf{I}}(Q)$

To LAV, this can only be applied if mappings are sound, but not exact:

- $\mathcal{M} = \{S_i \subseteq W_i \mid S_i \in \mathcal{S}\}$
- $\rightsquigarrow \mathbf{J} \text{ compatible with } \mathbf{I} \quad \text{ iff } \quad \mathbf{I} \subseteq \mathcal{W}(\mathbf{J})$
 - Can we invert \mathcal{W} to \mathcal{W}^{-1} ?
- ightarrow If so, a compatible ${f J}$ would have to satisfy ${\cal W}^{-1}({f I})\subseteq {f J}$

Inverse Rules: Idea (1)

Example: global relation Edge, sources $S_1 \subseteq W_1$, $S_2 \subseteq W_2$ where

$$W_1(X) \coloneqq \mathtt{Edge}(X,Z)$$
 $W_2(X,Y) \coloneqq \mathtt{Edge}(X,Z) \wedge \mathtt{Edge}(Z,Y)$

Let J be defined as

$$\mathbf{J}(\texttt{Edge}) = \{ \langle a, b \rangle, \ \langle b, c \rangle, \ \langle c, d \rangle, \ \langle d, e \rangle \}$$

Let $\mathbf{I} := \mathcal{W}(\mathbf{J})$, that is,

$$\mathbf{I}(S_1) = \{a, b, c, d\}$$

$$\mathbf{I}(S_2) = \{\langle a, c \rangle, \langle b, d \rangle, \langle c, e \rangle\}$$

How far can we reconstruct J from I?

Inverse Rules: Idea (2)

In W_1 , W_2 , there are existential variables

 \Rightarrow a compatible ${f J}$ must contain elements for these

Idea: Generate lost elements by Skolem functions

$$W_1(X) \coloneq \mathtt{Edge}(X,Z)$$
 $W_2(X,Y) \coloneq \mathtt{Edge}(X,Z) \wedge \mathtt{Edge}(Z,Y)$

 \sim Inverse rules \mathcal{W}^{-1} for Edge:

$$\begin{aligned} & \operatorname{Edge}(X, f(X)) \coloneq S_1(X) \\ & \operatorname{Edge}(X, g(X, Y)) \coloneq S_2(X, Y) \\ & \operatorname{Edge}(g(X, Y), Y) \coloneq S_2(X, Y) \end{aligned}$$

Inverse Rules: Definition

Let the conjunctive domain view in the mapping $S\subseteq W$ be defined by

$$W(\bar{x}) := R_1(\bar{s}_1), \ldots, R_n(\bar{s}_n)$$

The inverse rules for W are

$$R_j(\bar{t}_j) := S(\bar{x}), \qquad j = 1, \dots, n$$

where \bar{t}_j originates from \bar{x}_j as follows:

- ullet constants und distinguished variables from $ar{x}$ stay unchanged
- if $x \in \bar{s}_j$ is the i-th existential variable, say z_i , then x is replaced by Skolem term $f_i^S(\bar{x})$

Observation: for a collection of *conjunctive* views \mathcal{W} the set of rules \mathcal{W}^{-1} is *not* recursive

Inverse Rules: Example

For $\mathbf{J}_0 := \mathcal{W}^{-1}(\mathbf{I})$ we have

$$\begin{split} \mathbf{J_0}(\texttt{Edge}) &= \{ \langle a, f(a) \rangle, \ \langle b, f(b) \rangle, \ \langle c, f(c) \rangle, \ \langle d, f(d) \rangle, \\ & \langle a, g(a, c) \rangle, \ \langle b, g(b, d) \rangle, \ \langle c, g(c, e) \rangle, \\ & \langle g(a, c), c \rangle, \ \langle g(b, d), d \rangle, \ \langle g(c, e), e \rangle \} \end{split}$$

$$\mathsf{Query:} \quad Q(X,Y) \coloneq \mathsf{Edge}(X,Z_1), \, \mathsf{Edge}(Z_1,Y), \, \mathsf{Edge}(Y,Z_2)$$

Result:
$$Q(\mathbf{J_0}) = \{ \langle a, c \rangle, \ \langle b, d \rangle, \ \langle c, e \rangle, \ \langle g(a, c), \ g(c, e) \rangle \}$$

What happens for

$$\begin{aligned} &Q_1(X,Y) := \operatorname{Edge}(X,Z), \operatorname{Edge}(Z,Y) \\ &Q_2(X,Y) := \operatorname{Edge}(X,Y), \operatorname{Edge}(Y,Z) \\ &Q_3(X,Y) := \operatorname{Edge}(X,Y) \\ &Q_3(X,Y) := \operatorname{Edge}(X,Z), \ Q_3(Z,Y) \end{aligned} ?$$

Inverse Rules: Idea (3)

Observation: In the examples, $Q(\mathcal{W}^{-1}(\mathbf{I}))$ returned certain answers . . . and more

Idea: compute $Q(\mathcal{W}^{-1}(\mathbf{I}))$ — and remove the tuples with Skolem terms

Definition (Cutting out Skolem Terms)

$$(Q \circ \mathcal{W}^{-1})^{\downarrow}(\mathbf{I}) = \{ \overline{t} \in Q(\mathcal{W}^{-1}(\mathbf{I})) \mid \overline{t} \text{ contains no Skolem term} \}$$

 $Q \circ \mathcal{W}^{-1}$ can itself be seen as a query:

Rules for $Q \circ \mathcal{W}^{-1} = \text{Rules for } Q \cup \text{inverse rules}$

Question (to be addressed later on):

Can we express $(Q \circ \mathcal{W}^{-1})^{\downarrow}$ as a conjunctive query?

Inverse Rules and Certain Answers

Proposition

 $\mathcal{W}^{-1}(\mathbf{I})$ is compatible with \mathbf{I}

Proof.

Let $J_0 := \mathcal{W}^{-1}(I)$. We show that $I \subseteq \mathcal{W}(J_0)$.

Let S be a source relation and $\bar{d} \in \mathbf{I}(S)$.

Suppose the domain view W_S in the mapping " $S \subseteq W_S$ " $\in \mathcal{M}$ is defined as $W_S(\bar{x}) := R_1(\bar{s}_1), \ldots, R_n(\bar{s}_n)$.

The inverse rules are $R_i(\bar{t}_i) := S(\bar{x})$.

For \bar{d} the inverse rules generate the tuples $\bar{t}_i':=[\bar{x}/\bar{d}]\bar{t}_i\in\mathbf{J}_0(R_i)$,

which originate from the \bar{t}_i , by replacing the x_j with d_j .

For the assignment $\alpha = [x_1/d_1, \dots, x_n/d_k, z_1/f_1^S(\bar{d}), \dots, z_m/f_n^S(\bar{d})],$ we have $\mathbf{J}_0 \models \alpha(R_i(\bar{s}_i)).$

Thus, application of the rule for W_S gives $\bar{d} \in W_S(\mathbf{J}_0)$.

unibz.it

Inverse Rules and Certain Answers

Corollary (Completeness)

Let $\ensuremath{\mathcal{W}}$ be the set of domain views describing the sources in a set of sound LAV mappings. Then

$$cert_{\mathbf{I}}(Q) \subseteq (Q \circ \mathcal{W}^{-1})^{\downarrow}(\mathbf{I})$$

for all queries Q.

Proof.

$$\mathcal{W}^{-1}(\mathbf{I})$$
 compatible with $\mathbf{I} \Rightarrow cert_{\mathbf{I}}(Q) \subseteq Q(\mathcal{W}^{-1}(\mathbf{I}))$

No certain answer contains Skolem terms $\Rightarrow cert_{\mathbf{I}}(Q) \subseteq (Q \circ \mathcal{W}^{-1})^{\downarrow}(\mathbf{I})$

Inverse Rules and Certain Answers/2

Theorem (Soundness)

Let ${\mathcal W}$ be the set of domain views describing the sources in a set of sound LAV mappings. Then

$$(Q \circ \mathcal{W}^{-1})^{\downarrow}(\mathbf{I}) \subseteq \mathit{cert}_{\mathbf{I}}(Q)$$

for all relational conjunctive queries Q.

Proof will be added later. Uses the Universal Model Lemma below.

Inverse Rules and Certain Answers/3

 \mathcal{W}^{-1} contains in its domain elements (Skolem terms) that are not in **dom** Let **sko** be the set of all Skolem terms.

Let **J** be a "normal" instance and \mathbf{J}' an instance over **dom** \cup **sko**.

A homomorphism from \mathbf{J}' to \mathbf{J} is a mapping $\eta\colon\mathbf{sko}\to\mathbf{dom}$ such that $\eta A\in\mathbf{J}$ for every atom $A\in\mathbf{J}'$, that is $\eta R(\overline{t})=R(\eta\overline{t})\in\mathbf{J}$, whenever $R(\overline{t})\in\mathbf{J}'$.

Remark

If we view Skolem terms as variables, then \mathbf{J}' is a v-(multi-)table.

In this perspective, there is a homomorphism from J' to J iff $J \in Rep(J)$.

Inverse Rules and Certain Answers/4

Lemma (Universal Model)

Let $\mathcal{I} = (\mathcal{G}, \mathcal{L}, \mathcal{M})$ be with sound LAV mappings and conjunctive views \mathcal{W} .

Let I be a source instance and J be a global instance.

Then the following are equivalent:

- $oldsymbol{0}$ **J** is compatible with **I** (wrt \mathcal{I})
- ② there is a homomorphism from $\mathcal{W}^{-1}(\mathbf{I})$ to \mathbf{J}

Proof will be added later.

Query Plans: Definition

It would be nice to compute the certain answers for Q (or as many as possible) by running a (simple) query P on the sources.

Such a ${\cal P}$ could be considered a ${\it logical plan}$ for answering ${\cal Q}$

Definition

A query P over the source schema $\mathcal L$ is a $\operatorname{logical}$ query plan for Q if

$$P(\mathbf{I}) \subseteq cert_{\mathbf{I}}(Q)$$

for all source instances I.

How can one recognize that P is a query plan for Q?

→ Theory of query equivalence and containment

Containment and Equivalence Modulo a set of Views

 \mathcal{G} global schema, \mathcal{W} set of views over \mathcal{G}

P query over \mathcal{L} , Q query over \mathcal{G}

Definition

P is **contained in** Q **modulo** W, denoted $P \subseteq_{\mathcal{W}} Q$, iff

$$P(W(\mathbf{J})) \subseteq Q(\mathbf{J})$$

for all instances J of G

This means:

- We extend all **J**, using \mathcal{W} , so that the source relations $S \in \mathcal{L}$ are interpreted, too Call the extensions $J_{\mathcal{W}}$
- Then check " $P(\mathbf{J}_{\mathcal{W}}) \subseteq Q(\mathbf{J}_{\mathcal{W}})$ " for all \mathbf{J}

Query Plans and Containment Modulo a set of Views

Proposition (Plans are Contained)

If P is a plan for Q, then $P \subseteq_{\mathcal{W}} Q$.

Proof.

If ${\bf J}$ is a global instance, then ${\mathcal W}({\bf J})$ is a source instance and ${\bf J}$ is compatible with ${\mathcal W}({\bf J})$.

Thus: $P(W(\mathbf{J})) \subseteq cert_{W(\mathbf{J})}(Q) \subseteq Q(\mathbf{J})$.

Query Plans and Containment Modulo a Set of Views

Proposition (Monotonic Containees are Plans)

Let P be monotonic Then

$$P \subseteq_{\mathcal{W}} Q \quad \Rightarrow \quad P \text{ is a plan for } Q$$

Proof.

Let I be a source instance. We show that $P(I) \subseteq cert_{I}(Q)$.

Let **J** be compatible with $\mathbf{I} \Rightarrow \mathcal{W}(\mathbf{J})$ is a source instance with $\mathbf{I} \subseteq \mathcal{W}(\mathbf{J})$.

 $P \text{ monotonic } \Rightarrow P(\mathbf{I}) \subseteq P(\mathcal{W}(\mathbf{J})).$

$$P \subseteq_{\mathcal{W}} Q \Rightarrow P(\mathcal{W}(\mathbf{J})) \subseteq Q(\mathbf{J}).$$
 Hence: $P(\mathbf{I}) \subseteq Q(\mathbf{J})$

$$\mathbf{J}$$
 was arbitrary \Rightarrow $P(\mathbf{I}) \subseteq \bigcap_{\mathbf{J} \text{ compatible with } \mathbf{I}} Q(\mathbf{J}) = \mathit{cert}_{\mathbf{I}}(Q)$

Query Plans and Containment Modulo a Set of Views/2

Proposition (Exact Mappings)

Suppose all LAV mappings in $\mathcal W$ are exact, Q is a query over the global schema, and P is a query over the sources. Then

$$P \subseteq_{\mathcal{W}} Q \quad \Rightarrow \quad P \text{ is a plan for } Q$$

Proof.

Let I be a source instance. We show that $P(I) \subseteq cert_I(Q)$

J is a global instance compatible with $I \Rightarrow \mathcal{W}(J) = I$

$$P \subseteq_{\mathcal{W}} Q \Rightarrow P(\mathbf{I}) = P(\mathcal{W}(\mathbf{J})) \subseteq Q(\mathbf{J}).$$

As before, this shows $P(\mathbf{J}) \subseteq cert_{\mathbf{I}}(Q)$

Thus: in the case of *monotonic plans* or *exact mappings*, logical query plans are characterized by "containment module \mathcal{W} "

 \rightarrow how can we recognize "containment modulo \mathcal{W} "?

 \rightarrow how can we generate plans for Q?

Reduction " $\subseteq_{\mathcal{W}}$ " \rightarrow " \subseteq "

Let P be a plan for Q

If the views in $\mathcal W$ are not recursive, we can ${\bf unfold}$ the relation symbols of the views occurring in P , that is, we can replace them by their definitions

Notation: P^{unf} is the $\mathit{unfolding}$ of P

Clearly: $P \equiv_{\mathcal{W}} P^{unf}$

Consequence: $P \subseteq_{\mathcal{W}} Q$ iff $P^{\mathit{unf}} \subseteq Q$

What can we say about the

Unfolding Example (A. Halevy)

Global Relations

 $\label{eq:cites} \begin{array}{ll} \text{Cites}(x,y) & \text{if } x \text{ cites } y \\ \\ \text{SameTopic}(x,y) & \text{if } x \text{ and } y \text{ work on the same topic} \end{array}$

Query

$$Q(x,y) := SameTopic(x,y), Cites(x,y), Cites(y,x)$$

Global Views, describing two sources

$$W_1(u,v) := \mathtt{Cites}(u,v), \, \mathtt{Cites}(v,u)$$

 $W_2(u,v) := \mathtt{SameTopic}(u,v), \, \mathtt{Cites}(u,u'), \, \mathtt{Cites}(v,v')$

Suggested Plan

$$P(x,y) := W_1(x,y), W_2(x,y)$$

More Questions About Plans

- Can all certain answers be computed by plans?
- How many plans do we need?
- How can we compare plans?
- Is there a best set of plans?
- If so, how can we find it?

In LAV, the Certain Answer Function is Monotonic

We not that for sound LAV mappings, the function

$$\mathbf{I}\mapsto \mathit{cert}_{\mathbf{I}}(Q)$$

is always monotonic

Proposition

Consider an IIS with sound LAV mappings and let ${\it Q}$ be any query. Then

$$\mathbf{I} \subseteq \mathbf{I}' \Rightarrow cert_{\mathbf{I}'}(Q) \subseteq cert_{\mathbf{I}'}(Q)$$

The same holds for GLAV systems where the source views are monotonic

Logical Plans and Certain Answers

Proposition

Let \mathcal{W} and Q be arbitrary.

For every I and $d \in cert_{\mathbf{I}}(Q)$ there exists a conjunctive plan P for Q such that

$$\bar{d} \in P(\mathbf{I})$$

Proof.

Suppose $\mathbf{I}(S_i) = \{\bar{d}_{i,1}, \ldots, \bar{d}_{i,n_i}\}$ for $i \in [1, k]$

As on an earlier occasion, define P as

$$P(\bar{d}) := W_1(\bar{d}_{1,1}), \dots, W_1(\bar{d}_{1,n_1}), \dots, W_k(\bar{d}_{k,1}), \dots, W_k(\bar{d}_{k,n_k})$$

Since $\bar{d} \in P(\mathbf{I})$, we only need to show that P is a plan for Q, that is, $P \subseteq_{\mathcal{W}} Q$.

Let ${f J}$ be a global instance.

Case 1: $\mathbf{I} \subseteq \mathcal{W}(\mathbf{J}) \Rightarrow P(\mathcal{W}(\mathbf{J})) = \{\bar{d}\} \subseteq Q(\mathbf{J}), \text{ since } \bar{d} \text{ is a certain answer}$

Case 2: $\mathbf{I} \not\subseteq \mathcal{W}(\mathbf{J}) \Rightarrow P(\mathcal{W}(\mathbf{J})) = \emptyset \subseteq Q(\mathbf{J})$

Complete Sets of Plans

Let ${\mathcal W}$ be a set of global views and Q be a query.

Then $PLANS_{\mathcal{W}}(Q)$ denotes the set of all conjunctive query plans for Q in the IIS with sound mappings defined by \mathcal{W} .

Definition

- A subset $\mathcal{P} \subseteq \operatorname{PLANS}_{\mathcal{W}}(Q)$ is **complete** if for every source instance \mathbf{I} and every certain answer $\bar{d} \in \operatorname{cert}_{\mathbf{I}}(Q)$, there is a $P \in \mathcal{P}$ such that $\bar{d} \in P(\mathbf{I})$
- A complete set \mathcal{P} is **minimal** if no proper subset is complete.

Let $\mathcal P$ be a complete set of plans. Then for every Q and $\mathbf I$ we have

$$cert_{\mathbf{I}}(Q) = \bigcup_{P \in \mathcal{P}} P(\mathbf{I})$$

Do miminal complete sets of plans exist? What is their size?

Covering Sets of Plans

Definition

- $\mathcal{P} \subseteq \operatorname{PLANS}_{\mathcal{W}}(Q)$ is **covering** if for every plan P' there are plans $P_1, \ldots, P_n \in \mathcal{P}$ such that $P' \subseteq P_1 \cup \cdots \cup P_n$
- $\mathcal{P} \subseteq \operatorname{PLANS}_{\mathcal{W}}(Q)$ is **dominating** if for every plan P' there is a plan $P \in \mathcal{P}$ such that $P' \subseteq P$
- A covering (dominating) set is minimal if no proper subset is covering (dominating)
- Plan P is maximal if for every plan P' we have $P \subseteq P' \Rightarrow P' \subseteq P$

Proposition

Let \mathcal{P} be dominating set of plans and P be a maximal plan.

Then \mathcal{P} contains a plan P' such that $P \equiv P'$.

How are complete, covering, and dominating sets of plans related?

Plans in the Relational Case

On this and the next slide, we assume that ${\mathcal W}$ and Q are relational and we consider only relational plans.

Theorem (Covering by Maximal Plans)

- A covering set of plans is dominating.
- ② A minimal covering set contains only maximal plans.

Proof.

Claim 1 holds because for relational conjunctive queries we have that

$$Q \subseteq Q_1 \cup \cdots \cup Q_n$$
 iff $Q \subseteq Q_i$ for some $i \in [1, n]$.

Claim 2 holds for all dominating sets in preorders.

Note that Claim 1 would not hold for conjunctive queries with disequations or comparisons

Plans in the Relational Case/2

Theorem (Maximal Plans are Small and Simple)

Let $P \in \operatorname{PLANS}_{\mathcal{W}}(Q)$ be maximal. Then

- lacksquare P has at most as many atoms as Q
- $oldsymbol{\circ}$ P contains only constants occurring in Q or in ${\mathcal W}$

Proof.

Both claims follow from that fact that P is a plan iff $P^{\mathit{unf}} \subseteq Q$ iff there is a homomorphism from Q to P^{unf} .

The last two theorems tells us how we can compute, in principle, a minimal dominating (= covering) set of plans.

I am note aware that anyone has shown how difficult it is do decide whether a query over the sources is a maximal plan.

Questions about Logical Plans

- Given a set of views W, how many maximal plans for Q are there?
 At most? At least?
- Is it also possible in an exact LAV setting to compute all certain answers by plans?
- What is the data complexity of deciding certain answers
 - in a sound LAV setting?
 - in an exact LAV setting?
- What can we say about the difficulty of computing certain answers in a sound LAV setting if
- the query can contain comparisons?
- the views can contain comparisons?

Plans and Rewriting Queries Using Views

The problem of computing logical query plans in a sound LAV setting is the same as the one to compute rewritings of a query Q using views $\mathcal{W} = \{W_1, \dots, W_n\}$.

A query R over the relations in $\mathcal W$ is a (contained) rewriting of Q if

$$R^{unf} \subseteq Q$$
.

It is an exact rewriting if

$$R^{unf} \equiv Q$$
.

All results about covering, domininating, maximal plans etc.

can be rephrased as results about rewritings.

The "Bucket" Algorithm

The Bucket Algorithm was developed to generate query plans for the *Information Manifold* system, the first LAV integration system [Levy/Rajaraman/Ordille 1996].

Goal: Given a conjunctive query Q, compute a set $\mathcal{P} = \{P_1, \dots, P_n\}$ of plans for Q

If Q is relational, we want \mathcal{P} to be covering wrt. " \subseteq "

(i.e., for every plan P for Q there is a P_i with $P \subseteq P_i$)

The "Bucket"-Algorithm in an Example

Global schema:

Registered(student, course, year)

Course(course, number)

Enrolled(student, department)

Sources S_1 , S_2 , S_3 , S_4 described by the views:

$$W_1(s,n,y)$$
 :- Registered (s,c,y) , Course (c,n) , $n\geq 500$, $y\geq 2007$

$$W_2(s,d,c) := \mathtt{Enrolled}(s,d), \, \mathtt{Registered}(s,c,y)$$

$$W_3(s,c,y) := \texttt{Registered}(s,c,y), \ y \leq 2005$$

$$W_4(s,c,n) := \text{Enrolled}(s,cs), \text{Registered}(s,c,y),$$

 $\text{Course}(c,n), n \leq 100$

Query:
$$q(S) := \mathtt{Enrolled}(s,\mathtt{cs}), \, \mathtt{Registered}(s,c,2010),$$

$$\mathtt{Course}(c,n), \, n \geq 300$$

The "Bucket"-Algorithm: 1st Step

Idea:

- for each atom in Q, collect the views that possibly can appear in a plan
- exploit: unfolded plans are homomorphic images of the query

For each relational atom $r(\bar{y})$ in the query, create a "bucket":

For atom $r(\bar{y})$ collect all instantiated views $W_i(\phi_i \bar{x}_i)$ such that

- $\phi_i r(\bar{z})$ occurs in the body of $W_i(\phi_i \bar{x})$
- there is a substitution θ with $\theta r(\bar{y}) = \phi_i r(\bar{z})$ i.e., $r(\bar{y})$ and $r(\bar{z})$ are unifiable, without instantiating existential variables in W_i
- ullet ϕ_i and heta are as general as possible
- the comparisons on the variables of the two atoms are consistent

The "Bucket"-Algorithm: the Buckets

In our example: 3 buckets

$ exttt{Enrolled}(s, exttt{cs})$	$\mathtt{Registered}(s,c,2010)$	$\mathtt{Course}(c,n)$
$W_2(s, cs, C')$	$W_1(s, n', 2010)$	$W_1(s',n,y')$
$W_4(s,c',n')$		

The following views do not fit into the buckets:

 $W_2, W_4 \notin \text{BUCKET}(\text{Registered}(s, c, 2010))$: Y cannot be instantiated $W_3 \notin \text{BUCKET}(\text{Registered}(s, c, 2010))$: comparisons for n are inconsistent $W_4 \notin \text{BUCKET}(\text{Course}(c, n))$: comparisons for n are inconsistent

The "Bucket"-Algorithm: 2nd Step

Combine the views in the buckets, 1st possibility:

$$P_1(S) := W_2(s, cs, c'), W_1(s, n', 2010), W_1(s', n, y')$$

Unfold:
$$P_1^{unf}(S) := \boxed{\texttt{Enrolled}(s, \texttt{cs})}$$
, $\texttt{Registered}(s, c, y_1)$, $\boxed{\texttt{Registered}(s, c_2, 2010)}$, $\boxed{\texttt{Course}(c_2, n')}$, $n' \geq 500, \ 2010 \geq 2007$, $\boxed{\texttt{Registered}(s', c_3, y')}$, $\boxed{\texttt{Course}(c_3, n)}$, $n \geq 500, \ y' \geq 2007$

Query:
$$Q(S) := \boxed{ \texttt{Enrolled}(s, \texttt{cs}) }, \boxed{ \texttt{Registered}(s, c, 2010) },$$

$$\boxed{ \texttt{Course}(c, n) }, \, n \geq 300$$

Clearly: there is a hom from Q to $P_1^{unf} \Rightarrow P_1$ is a plan for Q

Moreover: P_1 is equivalent to P'_1 :

$$P_1'(S) := W_2(s, cs, c'), W_1(s, n', 2010)$$

The "Bucket"-Algorithm: 2nd Step (cont)

Combine the views in the buckets, 2nd possibility:

$$P_2(S) := W_4(s,c',n'), W_1(s,n'',2010), W_1(s',n,y')$$

Unfold:
$$P_2^{unf}(S):=$$
 Enrolled (s,cs) , Registered (s,c',y_1) , Course $(c',n'),\,n'\leq 100$

$$\boxed{ \texttt{Registered}(s, c_2, 2010)}, \boxed{ \texttt{Course}(c_2, n'')}, \\ n'' \geq 500, \ 2010 \geq 2007, \\ \texttt{Registered}(s', c_3, y'), \ \texttt{Course}(c_3, n), \\$$

$$n \ge 500, y' \ge 2007$$

Query:
$$Q(S) := \boxed{ \texttt{Enrolled}(s, \texttt{cs}) }, \boxed{ \texttt{Registered}(s, c, 2010) },$$

$$\boxed{ \texttt{Course}(c, n) }, \ n \geq 300$$

Clearly: there is a hom from Q to $P_2^{unf} \Rightarrow P_2$ is a plan for Q $P_2 \text{ can be optimized analogously to } P_1$

Observation

The Bucket Algorithm may find exponentially many plans

Example

$$Q(x_1,\ldots,x_n) := r_1(x_1),\ldots,r_n(x_n)$$

With 2n Sources S_i , S_i' , i = 1, ..., n, where

$$W_i(x_i) := r_i(x_i)$$
 and $W'_i(x_i) := r_i(\bar{x}_i)$,

it finds 2^n plans

$$P(x_1,\ldots,x_n) \ := \ \tilde{W}_1(x_1),\,\ldots,\,\tilde{W}_n(x_n), \qquad \text{where } \tilde{W}_i=W_i \text{ or } \tilde{W}_i=W_i'.$$

Note: for each plan P we have $P^{unf} = Q$

 \Rightarrow all plans are equivalent wrt. " $\equiv_{\mathcal{W}}$ ".

However: if we drop a plan, we lose certain answers

 \rightsquigarrow what is the meaning of " \equiv "?

What does the Bucket Algorithm Compute?

Clearly: Plans for Q (due to test $P^{unf} \subseteq Q$)

However: The original paper [Levy/Rajaraman/Ordille 1996] does not make statements about the semantics (in particular, not about completeness)

Theorem (Grahne/Mendelzon 1999)

For relational $\mathcal W$ and Q, the Bucket Algorithm returns a set of plans for Q that compute all certain answers.

Even: Completeness holds as well if Q is relational and the views in \mathcal{W} contain comparisons over a dense order.

Open: What does the Bucket Algorithm compute if Q contains comparisons? Under which conditions on Q is the set of plans complete?

Query Plans From Inverse Rules

Comparisons are conditions on the applicability of rules

(example only for W_1 and W_2)

$$\begin{split} \text{Registered}(s, f_c(s, n, y), y) &:= W_1(s, n, y) \mid\mid y \geq 2007 \\ \text{Course}(f_c(s, n, y), n) &:= W_1(s, n, y) \mid\mid n \geq 500 \\ \text{Enrolled}(s, d) &:= W_2(s, d, c) \\ \text{Registered}(s, c, f_y(s, d, c)) &:= W_2(s, d, c) \end{split}$$

Abduce the query plan from the query

Relational Query Languages: Overview

We consider the following classes of queries:

CQ: relational conjunctive queries without built-ins

 CQ^{\leq} : conjunctive queries with comparisons

 CQ^{\neq} : conjunctive queries with disequations

UCQ: unions of conjunctive queries, that is, disjunctions of conjunctive queries, or non-recursive Datalog queries

datalog: Datalog queries, that is, queries defined by (possibly recursive) rules

FO: queries in **first-order logic**, that is, relational calculus queries

Certain Answers and Containment

Let Q_1 , Q_2 be query languages

Let CERT^{snd}(Q_1, Q_2) be the **certain answer problem** for sound source descriptions $W \subseteq Q_1$ und queries $Q \in Q_2$:

Given: $\mathcal{W} \subseteq \mathcal{Q}_1$, $Q \in \mathcal{Q}_2$, source instance \mathbf{I} and tuple \bar{d}

Question: $\bar{d} \in \mathit{cert}_{\mathbf{I}}(Q)$ w.r.t. \mathcal{W} ?

Let $CONT(Q_1, Q_2)$ be the **containment problem** for queries in Q_1 and Q_2 :

Given: $Q_1 \in \mathcal{Q}_1$, $Q_2 \in \mathcal{Q}_2$

Question: $Q_1 \subseteq Q_2$?

Certain Answers and Containment (cntd)

Theorem (Abiteboul/Duschka 98)

Let Q_1 , $Q_2 \in \{ CQ, CQ^{\neq}, PQ, datalog, FO \}$. Then

- \bullet CERT^{snd} (Q_1,Q_2) and
- CONT (Q_1, Q_2)

can be reduced to each other in polynomial time.

Complexity of the Containment Problem

"
$$Q \subseteq Q'$$
"

	Q'				
Q	CQ	CQ≤	UCQ	datalog	FO
CQ	NP	Π_2^{P}	NP	dec.	undec.
CQ≤	NP	Π_2^{P}	NP	dec.	undec.
UCQ	NP	Π_2^{P}	NP	dec.	undec.
datalog	dec.	undec.	dec.	undec.	undec.
FO	undec.	undec.	undec.	undec.	undec.

...and the certain answer problem

Reduction CERT $^{snd}(\mathcal{L}_1,\mathcal{L}_2) o ext{CONT}(\mathcal{L}_1,\mathcal{L}_2)$

Given Q, \mathcal{W} , \mathbf{I} und \bar{d} with $\mathbf{I}(S_i) = \{\bar{d}_{i,1}, \ldots, \bar{d}_{i,n_i}\}$ for $i \in [1,k]$

Define Q'' as

$$Q''(\bar{d}) := W_1(\bar{d}_{1,1}), \dots, W_1(\bar{d}_{1,n_1}), \dots, W_k(\bar{d}_{k,1}), \dots, W_k(\bar{d}_{k,n_k})$$

Let $Q':=Q''\cup \mathcal{W}.$ (If \mathcal{Q}_1 is $\mathit{CQ},\ \mathit{CQ}^{\neq}$ or $\mathit{UCQ},$ then replace the view relations by their definitions.)

Show: $\bar{d} \in cert_{\mathbf{I}}(Q)$ wrt. \mathcal{W} iff $Q' \subseteq Q$

" \Rightarrow ": Let J be a global instance.

Case 1:
$$\mathbf{I} \not\subseteq \mathcal{W}(\mathbf{J}) \Rightarrow Q'(\mathbf{J}) = Q''(\mathcal{W}(\mathbf{J})) = \emptyset$$

Case 2: $\mathbf{I} \subseteq \mathcal{W}(\mathbf{J}) \Rightarrow Q'(\mathbf{J}) = \{\bar{d}\} \subseteq Q(\mathbf{J})$, since \bar{d} is a certain answer

Hence: $Q' \subseteq Q$

"\(\infty\)": Let \mathbf{J} be an instance with $\mathbf{I} \subseteq \mathcal{W}(\mathbf{J}) \Rightarrow \bar{d} \in Q''(\mathbf{I}) \subseteq Q''(\mathcal{W}(\mathbf{I})) = Q'(\mathbf{I})$ $Q' \subseteq Q \Rightarrow \bar{d} \in Q(\mathbf{J}). \quad \text{Hence: } \bar{d} \in \mathit{cert}_{\mathbf{I}}(Q)$

Reduction CONT $(Q_1, Q_2) \rightarrow \text{CERT}^{snd}(Q_1, Q_2)$

Let $Q_1 \in \mathcal{Q}_1$, $Q_2 \in \mathcal{Q}_2$

Let $\mathcal{W} := \{W\}$ be defined by Q_1 and

$$W(c) := Q_1(x), P(x), \qquad P \text{ new}$$

Define Q by Q_2 and

$$Q(c):=Q_2(x), P(x)$$

After the unfolding: $W \in \mathcal{Q}_1$, $Q \in \mathcal{Q}_2$.

Let I be an instance such that $I(W) := \{c\}.$

Show: $Q_1 \subseteq Q_2$ iff $c \in cert_{\mathbf{I}}(Q)$

" \Rightarrow ": Let \mathbf{J} be a global instance with $c \in \mathcal{W}(\mathbf{J}) \Rightarrow c \in Q(\mathbf{J})$ $\Rightarrow c \in \mathit{cert}_{\mathbf{I}}(Q)$

" \leftarrow ": $Q_1 \not\subseteq Q_2 \Rightarrow$ for a global $\mathbf J$ there is some d with $d \in Q_1(\mathbf J) \setminus Q_2(\mathbf J)$

W.l.o.g.,
$$\mathbf{J}(P) = \{d\} \Rightarrow \mathbf{I} \subseteq \mathcal{W}(\mathbf{J}) \text{ with } Q(\mathbf{J}) = \emptyset.$$
 Thus, $c \notin \mathit{cert}_{\mathbf{I}}(Q)$

