
Information Integration
Part 2: Basics of Relational Database Theory

Werner Nutt

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2011/2012

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Databases: Principles

A database has two parts: schema and instance

The schema describes how data is organized:

relations with their names, arity, names and types of attributes

integrity constraints like key and foreign key constraints,
functional dependencies, inclusion dependencies, check constraints

The instance contains the actual data:

for every relation, there is a relation instance

the relation instance is a set (multiset?) of tuples
of the right arity and type

Often, we ignore types and integrity constraints
Sometimes, we ignore also the attribute names

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (1/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Example Schema: Students and Courses

Relation schemas

Student(sid : INTEGER, sname : STRING, city : STRING, age : INTEGER)

Course(cid : INTEGER, cname : STRING, faculty : STRING)

Enrolled(sid : INTEGER, cid : INTEGER, aY : STRING, mark : STRING)

Integrity constraints

Primary keys

Student(sid)
Course(cid)
Enrolled(sid, cid, aY)

Foreign keys:

Enrolled(sid) references Student(sid)
Enrolled(cid) references Course(cid)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (2/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Schemas: Formalization

A relation schema consists of

a relation name

an ordered list of attributes, possibly with types

Abstract notation R(A1, . . . , An), or R(A1 : τ1, . . . , An : τn)

The arity of R, written ary(R), is the number of arguments of R

A database schema S consists of

a signature Σ, which is a set of relation schemas

a set Γ of integrity constraints over Σ,
which may be expressed as formulas in first-order logic (FOL)

Simplified notation: S = {R1, . . . , Rm}, or S = {R1/n1, . . . Rm/nm},
(i.e., we only mention the names or the names with their arity)

Exercise: Express the primary and foreign key constraints

in the Students and Course schema by FOL formulas

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (3/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Domain: Formalization

We assume there is an infinite set of constants dom, called the domain

When we ignore types, we do not make any assumptions
about the constants in dom

Otherwise, dom =
⋃k

i=1 τi, where τ1, . . . , τk are the types

Definition

A type τ with an order “<” is an ordered type. The order “<” is

dense if for every a, b ∈ τ with a < b, there is a c ∈ τ such that a < c < b

discrete if for every a, b ∈ τ with a < b, there are at most finitely many c
such that a < c < b

Example

Consider integers, reals, strings, and booleans.
Which type has a dense and which a discrete ordering?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (4/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relation Instances

Relation R with arity n:

an instance of R is a finite set of n-tuples over dom

Relation R with schema R(A1 : τ1, . . . , An : τn):

as before, plus the components of the n-tuples in an instance
have to be of the right type

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (5/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Schema Instances

An instance of the signature Σ is a function I that

maps every R ∈ Σ to an instance of R, denoted I(R)

Every instance I of Σ can be seen as a first-order interpretation/structure
(also denoted I):

domain of I is ∆I = dom

cI = c, for every c ∈ dom
(proper names, i.e., every constant is interpreted as itself)

RI = I(R)

A function I is an instance of the schema S = (Σ, Γ) if

I is an instance of Σ

I satisfies every integrity constraint γ ∈ Γ in the sense
of first-order logic (FOL)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (6/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Logic Programming Perspectice

Often an alternate definition of instances is helpful

Definition

A fact over a relation R with arity n is an expression R(a1, . . . , an),
where a1, . . . , an ∈ dom

A relation instance is a finite set of facts over R

A signature instance I of Σ is a finite set of facts over the relations in Σ

Example

Iuniv = { Student(123, Egger, Bozen, 24), Student(777, Hussein, Dresden, 22),
Course(104, Programming, CS), Course(106, Databases, CS),
Course(217, Optics, PHYS)
Enrolled(123, 104, 07/08, pass), Enrolled(123, 106, 09/10, fail),
Enrolled(123, 106, 08/01, fail), Enrolled(123, 106, 10/11, pass),
Enrolled(777, 217, 09/10, pass) }

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (7/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Queries

A query over a schema S is

a function that maps every instances of S to a set of tuples such that

all tuples have the same length (= arity of the query)

tuple values at the same position have the same type

a piece of syntax that defines such a function

Query languages are/should be declarative:

you express what you want to know, not how to compute it
(a query engine analyzes the query and creates an execution plan)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (8/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Query Languages

Theoretical languages

Relational Algebra (that’s how Codd started it)

Relational Calculus (= FOL in essence)

Datalog (drops negation, adds recursion)

Commercial language: SQL

= Relational Calculus (at its core)

+ Relational Algebra

+ a bit of Datalog (implemented in IBM DB2, Microsoft SQL Server)

+ aggregates, arithmetic, nulls, . . . , functions, procedures

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (9/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Algebra

Expressions E are built up from

relation symbols R

using the operators

union (E1 ∪ E2), intersection (E1 ∩ E2), set difference (E1 \ E2),
called boolean operators

selection σC(E)

projection πX(E)

cartesian product E1 × E2

join E1 1C E2

attribute renaming (ρA←B(E))

where C is a condition involving equalities and comparisons between attributes
and constants, and X is a set of attributes of E

For an instance I, an expression E is evaluated as a set of tuples E(I)

A query is an expression
W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (10/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Exercises

Express the following queries over our university schema in Relational Algebra

What are the names of the courses for which student Egger
has failed an exam?

Which students have failed an exam for the same course at least twice?

Which students have never failed an exam in Physics?

Evaluate the expressions over the instance Iuniv

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (11/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Calculus Queries

Definition

A query in (domain) relational calculus (RelCalc) has the form

Q = {(x1, . . . , xn) | φ}

where

φ is a predicate logic formula

x1, . . . , xn are the free variables of φ

We say that
φ is the body of the query,
x1, . . . , xn are the output variables, and
n is the arity of the query.

If the arity is not important, we write x̄ instead of x1, . . . , xn

We sometimes write Qφ to denote the query defined by φ
W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (12/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reminder on Predicate Logic Formulas

A term is a constant or a variable

An atom is an expression R(t1, . . . , tn) where R is a relation symbol of arity n
and t1, . . . , tn are terms

A formula F is an atom or has the form

F1 ∧ F2, F1 ∨ F2, or F1 → F2

¬F
∃xF (x), ∀xF (x)

where F , F1, F2 are formulas

Exercise: Show that the logical symbols ∧, ∃, ¬ suffice
to express all other symbols

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (13/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Equality and Built-in Predicates

Sometimes we use also the predicate symbols

“=”, “<”, “≤”, “ 6=”

Atoms with these symbols are called

equalities (“=”)

comparisons (“<”, “≤”)

disequalities (“ 6=”)

Clearly, they can only be applied to terms of the same type

Comparisons can only be used for terms of a type that is ordered

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (14/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Bound and Free Variables

Definition

An occurrence of a variable x in formula φ is bound
if it is within the scope of a quantifier ∃x or ∀x

An occurrence of a variable in φ is free iff it is not bound

A variable of formula φ is free if it has a free occurrence

Free variables specify the output of a query

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (15/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relational Calculus Queries: Semantics

In FOL, the semantics of a formula is defined in terms of interpretations and
assignments. Recall:

every instance I defines a first-order interpretation I

an assignment is a mapping α : var → dom

There is a classical recursive definition of when
an interpretation I and an assignment α satisfy a formula φ, written

I, α |= φ,

which we take for granted

Definition

Let Q = {(x1, . . . , xn) | φ} be a query. We define the answer of Q over I as

Q(I) = {α(x̄) | I, α |= φ}

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (16/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Exercise

Express the following queries over our university schema in Relational Calculus

Which are the names of students that have passed an exam in CS?

Which students (given by their id) have never failed an exam in CS?

Which students (given by their id) have passed the exams
for all courses in CS?

Evaluate the expressions over the instance Iuniv

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (17/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Relationship between Algebra and Calculus

Theorem

For every Relational Algebra expression E one can compute in polynomial time
a first-order formula φ such that

E(I) = Qφ(I)

for all instances I

Proof.

Induction over the structure of algebra expressions. Exercise! :-)

If the algebra expression E contains comparisons in the selection and join
conditions, then φ will have comparisons

What about the converse statement?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (18/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Safe Queries

Proposition

For every algebra expression E and every instance I, the set E(I) is finite

Proof.

How?

Definition

Let Qφ be a calculus query.
We say that Qφ is safe if Qφ(I) is finite for all instances I.

So, all algebra queries are safe. What about calculus queries?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (19/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Negation and Safety

Consider
Q = {(i, n, f) | ¬Course(i, n, f)}

What is Q(Iuniv)?

Theorem

Safety of relational calculus queries is undecidable

Proof.

Idea: Encode the finite satisfiability problem for FOL, which is known to be
undecidable (Trakhtenbrot’s Theorem)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (20/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

More Properties of Queries

Definition

Let Q, Q1, Q2 be relational calculus queries. We say that

Q is satisfiable iff there is an instance I such that Q(I) 6= ∅
(otherwise, Q is unsatisfiable)

Q1 and Q2 are equivalent (written Q1 ≡ Q2)
iff Q1(I) = Q2(I) for all instances I

Q1 is contained in Q2 (written Q1 v Q2)
iff Q1(I) = Q2(I) for all instances I

Theorem

Satisfiability, equivalence, and containment are undecidable for RelCalc queries

Proof.

Undecidability of satisfiability follows immediately from Trakhtenbrot’s theorem about
undecidability of finite satisfiability (although it is not exactly the same). The other
two claims can then be shown by reduction. Exercise!

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (21/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Domain Independence

Consider the query

Q = {x | Person(x) ∧ ∀ y Loves(x, y)}

Q is safe (only Persons are returned)

However, for arbitrary interpretations, the answer to Q depends
on the domain over which ∀ y ranges

A query with this property is domain dependent,
otherwise domain independent

You guess whether domain independence is decidable or not,
and how one can prove this result :-)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (22/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Equivalence Theorem of Relational Query Languages

The domain-independent relational calculus (DI-RelCalc) consists
of all domain-independent calculus queries

Theorem

Relational Algebra and DI-RelCalc have the same expressivity

That is, for every relational algebra expression E, there is a DI-RelCalc query Q
such that E ≡ Q and vice versa.

One can define the decidable class of safe range queries, which has the property
that for every domain-independent query there is an equivalent safe-range query

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (23/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

What Has This To Do With SQL?

We define the set of nice SQL queries as consisting of the queries constructed

with SELECT, FROM and WHERE clauses
plus UNION of subqueries
plus nesting with EXISTS and IN

with a DISTINCT in the SELECT clause

where the SELECT clause contains only attributes

with atomic conditions in WHERE clauses being equalities and comparisons,
involving only constants and attributes

with conditions in WHERE clauses being boolean combinations of atomic,
EXISTS, and IN conditions

We call the set of all those queries Nice SQL (short NSQL)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (24/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Nice SQL and Relational Query Languages

Theorem

Relational algebra, DI-RelCalc, and NSQL have the same expressivity

This should not be surprising because

NSQL combines the query constructs that have a correspondence in FOL

We dropped, among others,

arithmetic (“+”, “−”, “∗”),
string functions, string matching,
null values, outer joins,
aggregation

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (25/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Exercise

Express the following queries over our university schema in NSQL

Which are the names of students that have passed an exam in CS?

What are the names of the courses for which student Egger
has failed an exam?

Which students have failed an exam for the same course at least twice?

Which students (given by their id) have never failed an exam in CS?

Which students (given by their id) have passed the exams
for all courses in CS?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (26/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Looking Back . . .

We have reviewed three formalisms for expressing queries

Relational Algebra

Relational Calculus (with its domain-independent fragment)

Nice SQL

and seen that they have the same expressivity

However, crucial properties ((un)satisfiability, equivalence, containment)
are undecidable

Hence, automatic analysis of such queries is impossible

Can we do some analysis if queries are simpler?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (27/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Many Natural Queries Can Be Expressed . . .

. . . in SQL

using only a single SELECT-FROM-WHERE block and
conjunctions of atomic conditions in the WHERE clause;

we call these the CSQL queries.

. . . in Relational Algebra

using only the operators selection σC(E), projection πC(E),
join E1 1C E2, renaming (ρA←B(E));

we call these the SPJR queries (= select-project-join-renaming queries)

. . . in Relational Calculus

using only the logical symbols “∧” and ∃ such that
every variable occurs in a relational atom;

we call these the conjunctive queries

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (28/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Conjunctive Queries

Theorem

The classes of CSQL queries, SPJR queries, and conjunctive queries have all the
same expressivity. Queries can be equivalently translated from one formalism to
the other in polynomial time.

Proof.

By specifying translations.

Intuition: By a conjunctive query we define a pattern of what the things we are
interested in look like. Evaluating a conjunctive query is matching the pattern
against the database instance.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (29/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Rule Notation for Conjunctive Queries

By pulling the quantifiers outside, every conjunctive calculus query can be
written as

Q = {(x1, . . . , xk) | ∃ y1, . . . ,∃ yl (A1 ∧ · · · ∧Am)},

where A1, . . . , Am are (relational and built-in) atoms

We say that x1, . . . , xk are the distinguished variables of Q
and y1, . . . , ym the nondistinguished variables

We will often write such a query, using a rule in the style of PROLOG, as

Q(x̄) :– A1, . . . , Am

We say Q(x1, . . . , xk) is the head of the query and A1, . . . , Am the body

Note: Existential quantifiers are implicit,
since we list the free variables in the head.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (30/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Semantics of Conjunctive Queries

Consider a conjunctive formula

φ = ∃y1, . . . , yl(A1 ∧ · · · ∧Am)

such that

A1, . . . , Am are atoms, with relational or built-in predicates

x̄ = (x1, . . . , xk) is the tuple of free variables of φ

every variable occurs in a relational atom

Then Qφ is a conjunctive query

Proposition (Answer Tuple for a Calculus Query)

Let I be an instance. A k-tuple of constants c̄ is an answer tuple for Qφ over I
if and only if there is an assignment α such that

c̄ = α(x̄)

I, α |= Aj for j = 1, . . . ,m

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (31/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Schematic Notation of Conjunctive Queries

Q(x̄) :– L, M,

where

L = R1(t̄1), . . . , Rn(t̄n) is a conjunction of relational atoms

M = B1, . . . , Bp is a conjunction of built-in atoms
(that is, with predicates “<”, “≤”, “ 6=”),

every variable occurs in some Rj(t̄j) (guarantees safety of Q!)

Proposition (Answer Tuple for a Rule)

The tuple c̄ is an answer for Q over I iff there is an assignment α such that

c̄ = α(x̄)

α(t̄j) ∈ I(Rj), for j = 1, . . . , n

α |= M

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (32/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Conjunctive Queries: Logic Programming (LP) Perspective

I finite set of ground facts (= instance in LP perspective)

Proposition (Answer Tuple in LP Perspective)

The tuple c̄ is an answer for Q(x̄) :– L, M over I
iff there is an assignment α for the variables of φ such that

c̄ = α(x̄)

α(L) ⊆ I

α |= M

Note that for relational conjunctive queries (i.e., w/o built-ins),
satisfaction of Q by α over I boils down to

α(L) ⊆ I

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (33/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Elementary Properties of Conjunctive Queries

Proposition (Properties of Conjunctive Queries)

Let Q(x̄) :– L, M be a conjunctive query. Then

1 the answer set Q(I) is finite for all instances I
2 Q is monotonic, that is,

I ⊆ J implies Q(I) ⊆ Q(J) for all instances I, J
3 Q is satisfiable if and only if M is satisfiable

Proof.

1 Holds due to safety condition and finiteness of I
2 Follows easily with LP perspective

3 Exercise!

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (34/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Evaluation of Conjunctive Queries: Decision Problems

How difficult is it to compute Q(I)?

Definition (Evaluation problem for a single conjunctive query Q)

Given: instance I, tuple c̄

Question: is c̄ ∈ Q(I)?

Definition (Evaluation problem for the class of conjunctive queries)

Given: conjunctive query Q, instance I, tuple c̄

Question: is c̄ ∈ Q(I)?

Note:

First problem: Q is fixed (Data Complexity)

Second problem: Q is part of the input (Combined Complexity)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (35/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reminder on the Class NP

NP = the class of problems that can be decided by a nondeterminstic Turing
machine in polynomial time.

We compare problems in terms of reductions:
For two problems P1 ∈ Σ∗1 , P2 ∈ Σ∗2 , a function f : Σ∗1 → Σ∗2 is a polynomial
time many-one reduction (or Karp reduction) of P1 to P2 if and only if

s1 ∈ P1 ⇔ f(s1) ∈ P2 for all s1 ∈ Σ∗1
f can be computed in polynomial time

We write P1 ≤m P2 if there is a Karp reduction from P1 to P2.
The relation “≤m” is a preorder (= reflexive, transitive relation)

Theorem (Cook, Karp)

There are problems in NP that are maximal wrt “≤m”.

These problems are called NP-complete.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (36/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Evaluation of Conjunctive Queries: Complexity

Proposition (Data Complexity)

For every conjunctive query Q, there is a polynomial p, such that the evaluation
problem can be solved in time O(p(|I|)).

Idea: Q can be written as a selection applied to a cartesian product. What is
the width of the cartesian product?

Hence, data complexity is in PTIME. Actually, data complexity of evaluating
arbitrary FO (i.e., algebra or calculus) queries is in LOGSPACE

Proposition (Combined Complexity)

Given Q(x̄) :– L, M , I and c̄, one can guess in linear time an α such that

α satisfies L,M over I

α(x̄) = c̄

Hence, combined complexity is in NP. Is evaluation also NP-hard?
W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (37/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The 3-Colorability Problem

Definition (3-Colorability of Graphs)

Instance: A graph G = (V,E)

Question: Can G be colored with the three colors {r, g, b} in such a way
that two adjacent vertices have a distinct color?

The 3-colorability problem is NP-complete

A graph G is 3-colourable if and only if
there is a graph homomorphism from G to the simplex S3,
which consists of three vertices that are connected to each other

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (38/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reducing 3-Colorability to Evaluation

Theorem (Reduction)

There is a database instance I3col such that for every finite graph G
one can compute in linear time a relational conjunctive query QG() :– L
such that

G is 3-colorable if and only if QG(I3col) = {()}

Remark (Boolean Queries)

A query without distinguished variables is called a boolean query

Over an instance, a boolean query returns the empty tuple (), or nothing

This shows NP-hardness of the combined complexity of conjunctive query
evaluation

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (39/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The Reduction

Given graph G = (V,E), where

V = {v1, . . . , vn} and

E = {(vil
, vjl

) | il < jl, 1 ≤ l ≤ m}

We construct I3col and QG as follows

I3col = {e(r, b), e(b, r), e(r, g), e(g, r), e(b, g), e(g, b)}

QG() :– e(yi1 , yj1), . . . , e(yim , yjm)

where y1, . . . , yn are new variables and

there is one atom e(yil
, yjl

) for each edge (vil
, vjl

) ∈ E

Clearly, there is an α : {y1, . . . , yn} → {r, g, b} satisfying QG over I3col

iff there is a graph homomorphism from G to S3

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (40/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Evaluation of Conjunctive Queries in Practice

To assess the practical difficulty of query evaluation, one usually looks only
at data complexity: the size of the query is (very!) small compared to the
size of the data

Query optimizers try to find plans that minimize the cost of executing
conjunctive queries:

Find a good ordering of joins
Identify the best access paths to data (indexes)

The DBMS keeps statistics about size of relations and distribution of
attribute values to estimate the cost of plans

Well understood for a single DBMS,
more difficult if data sources are distributed

often, info about access paths and statistics are missing in data integration
scenarios
need to change execution plans on the fly

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (41/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The 3-Satisfiability Problem

Ingredients

Propositions p1, . . . , pn, . . .

Literals l: proposition (p) or negated propositions (¬p)
3-Clauses C: disjunctions of three literals (l1 ∨ l2 ∨ l3)

Definition (3-Satisfiability)

Given: a finite set C of 3-clauses

Question: is C satisfiable, i.e., is there a truth assignment α such that
α makes at least one literal true in every C ∈ C?

The 3-Sat Problem is the classical NP-complete problem

Next, we will use a reduction of 3-Satisfiability to Evaluation . . .

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (42/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Alternate Reduction From 3-Satisfiability

Theorem

For every set of 3-clauses C, there is an instance IC and a boolean relational
query QC such that

C is satisfiable if and only if QC(IC) 6= ∅

Definition of IC and QC .

Let C = {C1, . . . , Cm} and consider propositions as variables.

For every clause Ci ∈ C, choose a relation symbol Ri.

Let p
(i)
1 , p

(i)
2 , p

(i)
3 be the propositions in the clause Ci.

Let Ti = {t̄ (i)
1 , . . . , t̄

(i)
7 } be the seven triples of truth values that satisfy Ci.

E.g., if Ci = p2 ∨ ¬p4 ∨ p7, then Ti = {0, 1}3 \ {(0, 1, 0)}.
Define IC =

⋃
i{Ri(t̄) | t̄ ∈ Ti}.

Define QC() :– R1(p
(1)
1 , p

(1)
2 , p

(1)
3), . . . , Rm(p

(m)
1 , p

(m)
2 , p

(m)
3).

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (43/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Properties of Conjunctive Queries

Satisfiability can be decided in PTIME, since

satisfiability of a conjunction of comparisons can be decided in PTIME

If we can decide containment, then we can also decide equivalence, since

Q1 ≡ Q2 if and only if Q1 v Q2 and Q2 v Q1

If we can decide equivalence, we can also decide containment, since

Q1 v Q2 if and only if Q1 ≡ Q1 ∩Q2

Why is Q1 ∩Q2 again a conjunctive query?

We will concentrate on containment

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (44/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Conjunctive Query Containment: Warm-Up

Find all containments and equivalences among the following conjunctive queries:

Q1(x, y) :– R(x, y), R(y, z), R(z, w)

Q2(x, y) :– R(x, y), R(y, z), R(z, u), R(u,w)

Q3(x, y) :– R(x, y), R(z, u), R(v, w), R(x, z), R(y, u), R(u,w)

Q4(x, y) :– R(x, y), R(y, 3), R(3, z), R(z, w)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (45/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Idea: Reduce Containment to Evaluation! (1)

Q′(x, y) :– R(x, y), R(y, z), R(y, u)

Q(x, y) :– R(x, y), R(y, z), R(w, z)

Step 1 Turn Q into an instance IQ by “freezing” the body of Q, i.e.,
replace variables x, y, z, w with constants cx, cy, cz, cw:

IQ = {R(cx, cy), R(cy, cz), R(cw, cz)}

Observe that (cx, cy) ∈ Q(IQ)

Idea: IQ is prototypical for any database where Q returns a result

Step 2 Evaluate Q′ over IQ

Case 1 If (cx, cy) /∈ Q′(IQ), then we have found a counterexample: Q 6v Q′.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (46/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Idea: Reduce Containment to Evaluation! (2)

Case 2 If (cx, cy) ∈ Q′(IQ), then there is an α such that

α(x) = cx, α(y) = cy

α(A) ∈ IQ for every atom A′ in the body of Q′

For instance,
α = {x/cx, y/cy, z/cz, u/cz}

does the job.

With α we can extend every satisfying assignment for Q
to a satisfying assignment for Q′, as follows:

Let I be an arbitrary db instance and (d, e) ∈ Q(I) be an answer of Q over I.
Then there is an assignment β such that

β(x) = d, β(y) = e

β(B) ∈ I for every atom B in the body of Q.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (47/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Idea: Reduce Containment to Evaluation! (3)

Define the substitution α′ (= mapping from terms to terms, not moving
constants) by “melting” α, that is,
replacing every constant cv with the corresponding variable v:

α′ = {x/x, y/y, z/z, u/z}.

Define β′ = β ◦ α′, that is, as composition of first α′ and then β.

Then β′(x) = β(α′(x)) = β(x) = d and, similarly, β′(y) = e.

Moreover if A′ is an atom of Q′, then

α′(A′) is an atom of Q, since α(A′) ∈ IQ

β′(A′) = β(α′(A)) ∈ I, since β maps every atom of Q to a fact in I

Hence, (d, e) = (β′(x), β′(y)) is an answer of Q′ over I.

This shows, Q(I) ⊆ Q′(I) for an arbitrary I and thus, Q v Q′.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (48/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Query Homomorphisms

Definition

Consider conjunctive queries without built-ins

Q′(x̄) :– L′

Q(x̄) :– L

A mapping δ : Terms (Q′) → Terms (Q) is a query homomorphism
(from Q′ to Q) if

δ(c) = c for every constant c

δ(x) = x for every distinguished variable x of Q′

δ(L′) ⊆ L

Intuitively,

δ respects constants and distinguished variables

δ maps conditions of Q′ to conditions in Q that are no less strict

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (49/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Finding Homomorphisms

Find all homomorphisms among the following conjunctive queries:

Q1(x, y) :– R(x, y), R(y, z), R(z, w)

Q2(x, y) :– R(x, y), R(y, z), R(z, u), R(u,w)

Q3(x, y) :– R(x, y), R(z, u), R(v, w), R(x, z), R(y, u), R(u,w)

Q4(x, y) :– R(x, y), R(y, 3), R(3, z), R(z, w)

In terms of complexity, how difficult is it to decide whether there exists a
homomorphism between two queries?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (50/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The Homomorphism Theorem

Theorem (Chandra/Merlin)

Let Q′(x̄) :– L′ and Q(x̄) :– L be conjunctive queries (w/o built-in predicates).
Then the following are equivalent:

there exists a homomorphism from Q′ to Q

Q v Q′.

Proof.

Straightforward by generalizing the previous example.

What are homomorphisms for queries with built-in predicates?
What should we do with the comparisons?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (51/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Homomorphisms between Queries with Comparisons

Example

Q′() :– R(x, y),

x ≤ 2, y ≥ 3

Q() :– R(u, v), R(v, w)

u ≥ 3, v ≥ 0, v ≤ 1, w ≥ 4

There are two “relational” homomorphisms:

δ ={x/u, y/v}

η ={x/v, y/w}

Which of the two deserves the title of homomorphism?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (52/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Query Homomorphisms

Definition

Consider conjunctive queries with comparisons

Q′(x̄) :– L′,M ′

Q(x̄) :– L,M

A mapping δ : Terms (Q′) → Terms (Q) is a query homomorphism if

δ(c) = c for every constant c

δ(x) = x for every distinguished variable x of Q′

δ(L′) ⊆ L

M |= δ(M ′).

Intuition: With respect to δ, the comparisons in Q are more restrictive than
those in Q

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (53/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Homomorphisms between Queries with Comparisons

Example

Q′(x) :– P (x, y), R(y, z),

y ≤ 3

Q(x) :– P (x,w), P (x, x), R(x, u),

w ≥ 5, x ≤ 2

The substitution
δ = {x/x, y/x, z/u}

is a relational homomorphism

satisfies w ≥ 5, x ≤ 2 |= δ(y) ≤ 3

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (54/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Does the Hom Theorem Hold for Queries w/ Comparisons?

Q′(x̄) :– L′,M ′ Q(x̄) :– L,M

Let δ : Q′ → Q be an hom, I an instance. Suppose c̄ ∈ Q(I). Is c̄ ∈ Q′(I)?

Since c̄ ∈ Q′(I), there is α such that

α(x̄) = c̄

α(L) ⊆ I

α |= M .

Define α′ = α ◦ δ. Then

α′(x̄) = α(δ(x̄)) = α(x̄) = c̄

α′(L′) = α(δ(L′)) ⊆ α(L) ⊆ I

α |= δ(M ′), since α |= M and M |= δ(M ′) ⇒ α ◦ δ |= M ′.

Thus, c̄ ∈ Q′(I).
W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (55/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The Homomorphism Theorem for Queries w/ Comparisons

We have just proved the following theorem:

Theorem (Homomorphisms Are Sufficient for Containment)

Let Q′(x̄) :– L′,M ′ and Q(x̄) :– L,M be conjunctive queries.

If there is a homomorphism from Q′ to Q, then Q v Q′.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (56/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Does the Converse Hold as Well?

Intuitition:

Blocks can be either black or white.

Block 1 is on top of block 2, which is on top of block 3.

Block 1 is white and block 3 is black.

Is there a white block on top of a black block?

Example

Q′() :– S(x, y), x ≤ 0, y > 0

Q() :– S(0, z), S(z, 1)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (57/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Case Analysis for Q

Define

Q{z<0}() :– S(0, z), S(z, 1), z < 0

Q{z=0}() :– S(0, 0), S(0, 1)

Q{0<z<1}() :– S(0, z), S(z, 1), 0 < z, z < 1

Q{z=0}() :– S(0, 1), S(1, 1)

Q{1<z}() :– S(0, z), S(z, 1), z > 1

We note

Q is equivalent to the union of Q{z<0}, . . . , Q{1<z}
there is a homomorphism from Q′ to Q{...} for each ordering {. . .}
Q{...} v Q′ for for each {. . .}

⇒ Q v Q′

Idea: Replace Q with
⋃
{...}Q{...} when checking “Q v Q′?”

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (58/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations

We now make this idea formal.

We assume that all of dom is one linearly ordered type. Let

– D be a set of constants from dom,
– W be a set of variables,
– and let T := D ∪W denote their union.

A linearization of T over dom is a set of comparisons N over the terms in
T such that for any s, t ∈ T exactly one of the following holds:

– N |=dom s < t
– N |=dom s = t
– N |=dom s > t.

That is, N partitions the terms into classes such that

the terms in each class are equal and
the classes are arranged in a strict linear order

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (59/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations (cntd)

Remark: A class of the induced partition contains at most one constant

Remark: Whether or not N is a linearization may depend on the domain.
Consider e.g.,

{1 < x, x < 2}

A linearization N of T over dom is compatible with a set of comparisons
M if M ∪N is satisfiable over dom

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (60/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations of Conjunctive Queries

When checking containment of two queries, we have to consider
linearizations that contain the constants of both queries

Let
Q(x̄) :– L, M

be a query and

W be the set of variables occurring in Q
D be a set of constants that comprise the constants of Q

Then we denote with LD(Q) the set of all linearizations of D ∪W that are
compatible with the comparisons M of Q

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (61/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations of Conjunctive Queries (cntd)

Proposition

Let Q, W , D and M be as above and let α : W → dom be an assignment.
Then the following are equivalent:

α |= M

α |= N for some N ∈ LD(Q)

Proof.

“⇐” Let N ∈ LD(Q). Since Terms (M) ⊆ D ∪W , and N is a linearization of
D ∪W , we have that N |= M :
To see this, let s ≤ t ∈M . Then N |= s < t or N |= s = t or N |= s > t.
Since M ∪ {s > t} is unsatisfiable, we have N |= s ≤ t.

“⇒” For α |= M let Nα = {B | B is a built-in atom with terms from D ∪W
and α |= B}.

Then Nα is a linearization of D ∪W compatible with M and α |= Nα.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (62/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations of Conjunctive Queries (cntd)

Let Q be as above. Let N be a linearization of T = D ∪W compatible with M .

Note: N defines an equivalence relation on T , where each equivalence
class contains at most one constant

A substitution φ is canonical for N if

it maps all elements in an equivalence class of N to one term of that
class
if a class contains a constant, then it maps the class to that constant.

Then QN is obtained from Q by means of a canonical substitution φ for N
as

QN (φ(x̄)) :– φL ∧ φN,
that is,

we first replace M with N
and then “eliminate” all equalities by applying φ

Note: We must admit also queries with a tuple of terms s̄ in the head

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (63/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linearizations of Conjunctive Queries (cntd)

Definition (Linearization)

The queries
QN (φ(x̄)) :– φL ∧ φN,

are called linearizations of Q w.r.t. N

There may be more than one linearization of Q w.r.t. N ,
but all linearizations are identical up to renaming of variables

Note that φ is a homomorphism from Q to QN

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (64/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Linear Expansions

Definition (Linear Expansion)

A linear expansion of Q over D is a family of queries (QN)N∈LD(Q),
where each QN is a linearization of Q w.r.t. N

If Q and D are clear from the context we write simply (QN)N .

Proposition

Let (QN)N be a linear expansion of Q over D.
Then Q and the union

⋃
N∈LD(Q)QN are equivalent.

Proof.

Follows from two facts:

M and the disjunction
∨

N∈LD(Q)N are equivalent

If φ is a canonical substitution for N , then QN (φ(x̄)) :– φL, φN and
Q(x̄) :– L,N are equivalent

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (65/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Containment of Queries with Comparisons

Theorem (Klug 88)

If

– Q, Q′ are conjunctive queries with comparisons
with set of constants D

– (QN)N is a linear expansion of Q over D,

then:

Q v Q′ ⇔ for every QN in (QN)N ,
there is an homomorphism from Q′ to QN

Corollary

Containment of conjunctive queries with comparisons is in ΠP
2 .

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (66/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Containment of Queries with Comparisons (cntd)

Proof.

Suppose Q′, Q, and (QN)N are as in the theorem. Let W = var(Q).

“⇐” If there is a homomorphism from Q′ to QN , then QN v Q′.
Thus, Q v Q′, since Q ≡

⋃
N QN .

“⇒” If Q v Q′, then QN v Q′ for every N ∈ LD(Q).
It suffices to show: “QN v Q′ ⇒ there is a homomorphism from Q′ to QN”

Recall: QN (φx̄) :– φL, φN .
Let α |= N . N is a linearization of W ∪D ⇒ α is injective on Terms (QN).
Then: (i) Iα = αφL is an instance, (ii) α(φx̄) ∈ QN (Iα).
Also: QN v Q′ ⇒ α(φx̄) ∈ Q′(Iα).
Hence, there is an assignment β′ for var(Q′) such that

(i) Iα, β
′ |= Q′ and (ii) β′x̄ = αφx̄.

Now, due to the injectivity of α on Terms (QN),
and since every constant of Q′ occurs in N ,

β := α−1β′ is well defined and is a homomorphism from Q′ to Q.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (67/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Containment of Queries with Comparisons (cntd)

Proof (Continued).

To show that β is a homomorphism, it remains to prove that N |= βM ′.

Let s′ < t′ ∈M ′. Then β′s′ < β′t′, since Iα, β
′ |= M ′.

Now, α−1β′s′, α−1β′t′ are terms of QN , thus one of

α−1β′s′ < α−1β′t′, α−1β′s′ = α−1β′t′, or α−1β′s′ > α−1β′t′

is in N , since N is a linearization.

Clearly, α−1β′s′ < α−1β′t′ ∈ N , since α |= N .

The case of a comparison s′ ≤ t′ ∈M ′ is dealt with analogously.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (68/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reminder on the Class PSPACE

PSPACE = the class of problems that can be decided by a deterministic
(or nondeterministic) Turing machine with polynomial space

There are PSPACE-complete problems. The best-known PSPACE-complete
problem is the one of validity of quantified Boolean formulas (QBF).

A quantified Boolean formula (qbf) consists of a prefix and a matrix:

the matrix is a propositional formula φ

the prefix is a sequence of quantifications Q1x1, . . . , Qnxn

where x1, . . . , xn are the propositions in φ and Qi ∈ {∀, ∃}

An example of a qbf is

∀x∃y ∃z ∀w (x ∨ ¬y ∨ z) ∧ (y ∨ ¬z ∨ w)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (69/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

PSPACE-complete Problems

A qbf is valid if there is a set of assignments A such that

Q is compatible with the prefix

every α ∈ A satisfies the matrix

Definition (QBF Problem)

Given: a quantified Boolean formula

Question: is the formula valid?

Theorem (PSPACE-Completeness)

The QBF problem is complete for the class PSPACE

What is the combined complexity of the evaluation problem for relational
calculus queries? And what is the data complexity?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (70/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reminder on the Polynomial Hierarchy

There are problems in PSPACE that are NP-hard,
but have neither been shown to be in NPnor to be PSPACE-complete.

For a problem P , a Turing machine with a P -oracle
is an extension of a regular Turing machine that

can write strings s on a special tape, the oracle tape

receive a one-step answer whether s ∈ P or not.

Let C be a class of problems.

The class NPC consists of all problems that can be solved by a polynomial
time nondeterministic Turing machine with an oracle for some P0 ∈ C.

The class coNPC consists of all problems P whose complements
Σ∗ \ P are in NPC .

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (71/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reminder on the Polynomial Hierarchy (cntd)

Definition (Polynomial Hierarchy)

One defines recursively the classes ΣP
k , ΠP

k of the polynomial hierarchy as

ΣP
0 = ΠP

0 = P

ΣP
k+1 = NPΣP

k

ΠP
k+1 = coNPΣP

k

Note: ΣP
1 = NP and ΠP

1 = coNP

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (72/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Complete Problems for the Polynomial Hierarchy

A complete problem for ΣP
k is ∃QBFk. It consists of all valid qbfs with

k alternations of quantifiers, starting with an existential:

∃X1 ∀X2 . . . , Qk φ

If k is even, the problem is already complete if φ consists of a disjunction
of conjunctive 3-clauses.

If k is odd, the problem is already complete if φ consists of a conjunction
of disjunctive 3-clauses.

A complete problem for ΠP
k is ∀∃QBFk. It consists of all valid qbfs with

k alternations of quantifiers, starting with a universal:

∀X1 ∃X2 . . . , Qk φ

Analogous subclasses to the ones above are already complete for ΠP
k .

In particular, ∀∃3SAT is complete for ΠP
2

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (73/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Containment of Queries with Comparisons

Theorem (van der Meyden 92)

Containment with comparisons is ΠP
2 -complete.

The proof here is different from the one by van der Meyden.

It uses a simple pattern that can be used to prove many more ΠP
2 -hardness

results about query containment, for instance, containment of queries

with the predicate “ 6=”

with negated subgoals (like ¬R(x))

SQL null values.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (74/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reduction of ∀∃3SAT to Containment with Comparisons

We show the reduction for a general formula

ψ = ∀x1, . . . , xm∃y1, . . . , yn γ1 ∧ . . . ∧ γk

where γ1, . . . , γk are disjunctive 3-clauses, and for the example

ψ0 = ∀x1 ∀x2 ∃y1 ∃y2 (x1 ∨ ¬x2 ∨ y1) ∧ (x2 ∨ ¬y1 ∨ y2)

We define boolean queries Q′, Q such that Q v Q′ iff ψ is valid.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (75/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reduction of ∀∃3SAT to Containment with Comparisons

We model the universal quantifiers ∀xi

by pairs of “generator conditions” G′i, Gi,
following the “black and white blocks” example:

G′i = Si(ui, vi, xi), ui ≤ 4, vi > 4

Gi = Si(4, wi, 1), Si(wi, 5, 0)

Idea: For G′i to be more general than Gi

xi must be mapped to 1, if wi is bound to a value ≤ 4

xi must be mapped to 0, otherwise.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (76/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reduction of ∀∃3SAT to Containment with Comparisons

For every clause γi, we introduce

H ′i = Ri(p
(i)
1 , p

(i)
2 , p

(i)
3)

Hi = Ri(t̄
(i)
1), . . . , Ri(t̄

(i)
7)

where p
(i)
1 , p

(i)
2 , p

(i)
3 are the three propositions occuring in γi and

t̄
(i)
1 , . . . , t̄

(i)
7 are the seven combinations of truth values that satisfy γi.

In our example

H ′1 = R1(x1, x2, y1)

H1 = R1(0, 0, 0), R1(0, 0, 0), R1(0, 1, 1),

R1(1, 0, 0), R1(1, 0, 1), R1(1, 1, 0), R1(1, 1, 1)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (77/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Reduction of ∀∃3SAT to Containment with Comparisons

The queries for ψ are

Q′() :– G′1, . . . , G
′
m,H

′
1, . . . ,H

′
n

Q() :– G1, . . . , Gm,H1, . . . ,Hn

Lemma

Q v Q′ iff ψ is valid

Sketch.

“⇐” For cach binding of the wi in Q over a db instance, we can map G′i to one
of the atoms in Gi. Such a mapping corresponds to a choice of 0 or 1 for xi.
If ψ is valid, then for every binding of the xi we find values for the yj that
satisfy all clauses. These values allows us to map H ′l to one of the atoms in Hi

“⇒” For each assignment of 0, 1 to the xi, we create a db instance by
instantiating wi in Q with 4 or 5. This instance satisfies Q. It must also satisfy
Q′. This tells us that we can instantiate the yj such that ψ is satisfied.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (78/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Minimizing Conjunctive Queries

A conjunctive query may have atoms that can be dropped
without changing the answers.

Since computing joins is expensive,
this has the potential of saving computation cost

Goal: Given a conjunctive query Q, find an equivalent conjunctive
query Q′ with the minimum number of joins.

Questions: How many such queries can exist?

How different are they?

How can we find them?

Assumption: We consider only relational CQs.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (79/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The “Drop Atoms” Algorithm

Input: Q(x̄) :– L

L′ := L;
repeat until no change

choose an atom A ∈ L;
if there is a homomorphism

from Q(x̄) :– L′ to Q(x̄) :– L′ \ {A}
then L′ := L′ \ {A}

end

Output: Q′(x̄) :– L′

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (80/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Questions About the Algorithm

Does it terminate?

Is Q′ equivalent to Q?

Is Q′ of minimal length among the queries equivalent to Q?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (81/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Subqueries

Definition (Subquery)

If Q is a conjunctive query,

Q(x̄) :– R1(t̄1), . . . , Rk(t̄k),

then Q′ is a subquery of Q if Q′ is of the form

Q′(x̄) :– Ri1(t̄i1), . . . , Ril
(t̄il

)

where 1 ≤ i1 < i2 < . . . < il ≤ k.

Proposition

The Drop-Atoms Algorithm outputs a subquery Q′ of Q such that

Q′ and Q are equivalent

Q′ does not have a subquery equivalent to Q.

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (82/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

To Minimize Q, It’s Enough To Shorten Q

Proposition

Consider the relational conjunctive query

Q(x̄) :– R1(t̄1), . . . , Rn(t̄n).

If there is an equivalent conjunctive query

Q′(x̄) :– S1(s̄1), . . . , Sl(s̄m), m < k,

then Q0 is equivalent to a subquery

Q0(x̄) :– Ri1(t̄i1), . . . , Ril
(t̄il

), l ≤ m.

In other words: If Q is a relational CQ with n atoms and Q′ an equivalent
relational CQ with m atoms, where m < n, then there exists a subquery Q0

of Q such that Q0 has at most m atoms in the body and Q0 is equivalent to Q.

Proof as exercise!
W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (83/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Minimization Theorem

Theorem (Minimization)

Let Q and Q′ be two equivalent minimal relational CQs. Then Q and Q′ are
identical up to renaming of variables.

Proof as exercise!

Conclusions:

There is essentially one minimal version of each relational CQ Q

We can obtain it by dropping atoms from Q’s body

The Drop-Atoms algorithm is sound and complete

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (84/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Minimizing SPJ/Conjunctive Queries: Example

Consider relation R with three attributes A, B, C and the SPJ query

Q = πAB(σB=4(R)) 1 πBC(πAB(R) 1 πAC(σB=4(R)))

Translate into relational calculus:`
∃z1 R(x, y, z1) ∧ y = 4

´
∧ ∃x1

“`
∃z2 R(x1, y, z2)

´
∧

`
∃y1 R(x1, y1, z) ∧ y1 = 4

´”
Simplify, by substituting the constant, and pulling quantifiers outward:

∃x1, z1, z2 (R(x, 4, z1) ∧R(x1, 4, z2) ∧R(x1, 4, z) ∧ y = 4)

Conjunctive query:

Q(x, y, z) :– R(x, 4, z1), R(x1, 4, z2), R(x1, 4, z), y = 4

Then minimize: Exercise!

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (85/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Minimization of Queries with Built-Ins

For queries with built-ins, things become more difficult:

Example (Gottlob)

Q() :– R(x1, x2), R(x2, x3), R(x3, x4), R(x4, x5), R(x5, x1),

x1 6= x2

Q′() :– R(x1, x2), R(x2, x3), R(x3, x4), R(x4, x5), R(x5, x1),

x1 6= x3

We note

Q, Q′ are equivalent
(assume they are not, and find a contradiction!)

there is no homomorphism Q→ Q′ and no homomorphism Q′ → Q

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (86/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Minimization of Queries with Built-Ins (Cntd)

There is no theory yet about minimization of CQs with Built-Ins.

To the best of my knowledge, the following questions are still open:

Are there CQs Q, Q′ with comparisons that are equivalent,
but cannot be mapped homomorphically to each other?

Are there CQs Q, Q′ with built-ins that are equivalent,
but have different numbers of atoms?

How similar are the results of the Drop-Atoms Algorithm,
if we apply it to CQs with built-ins?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (87/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Functional Dependencies

Consider the relation

Lect(name, office, course)

For any university instance,

all tuples with the same “name” have the same “office” value

tuples may have the same “course”, but different “name” and “office”
(if lecturers share courses)

tuples may have the same “office”, but different “name” and “course”
(if lecturers share offices)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (88/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Functional Dependencies (Cntd)

Lect(name, office, course)

The formula

∀n, o1, c1, o2, c2 (Lect(n, o1, c1) ∧ Lect(n, o2, c2) → o1 = o2)

is a functional dependency (FD).

Assuming that Lect is clear from the context, we abbreviate it as

name → office

and read “name determines office”.

FDs are a frequent type of integrity constraints (keys are a special case)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (89/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Functional Dependencies (Cntd)

Notation:

If R is relation with attribute set Z, we write FDs as

X → A or X → Y

where X, Y ⊆ Z and A ∈ Z
X, Y , Z represent sets of attributes; A, B, C represent single attributes

no set braces in sets of attributes: just ABC, rather than {A,B,C}

Semantics:

X → Y is satisfied by an instance I, that is I |= X → Y , iff

πX(t) = πX(t′) implies πY (t) = πY (t′), for all t, t′ ∈ I(R)

Note: X → AB is a equivalent to X → A and X → B

⇒ it suffices to deal with FDs X → A

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (90/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Equivalence wrt Functional Dependencies

Consider the queries

Q = Lect

Q′ = πname,course(Lect) 1name πname,office(Lect)

In general, is there equivalence/containment among Q, Q′?

What if we take into account the FD name→ office?

Instead of algebra, let’s use rule notation

Q(n, o, c) :– Lect(n, o, c)

Q′(n, o, c) :– Lect(n, o′, c), Lect(n, o, c′)

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (91/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Chase and Miminize

Q′(n, o, c) :– Lect(n, o′, c), Lect(n, o, c′)

Using the FD name→ office, we infer o = o′:

Q′(n, o, c) :– Lect(n, o, c), Lect(n, o, c′)

Minimizing using Drop Atom, we get

Q′(n, o, c) :– Lect(n, o, c)

Thus, Q′ ≡ Q

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (92/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

FD Violations

Notation: Instead of πX(t) and πA(t), we write t.X and t.A

Definition (Violation)

The FD X → A over R is violated by the atoms R(t), R(t′) if

t.X = t′.X and

t.A 6= t′.A

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (93/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

The Chase Algorithm

Input: query Q(s̄) :– L, set of FDs F

let (s̄′, L′) = (s, L)
while
L′ contains atoms R(t), R(t′),

violating some X → A ∈ F do
case t.A, t′.A of
• one is a nondistinguished variable
⇒ in (s̄′, L′), replace the nondistinguished variable by the other term

• one is a distinguished variable,
the other one a distinguished variable or constant

⇒ in (s̄′, L′), replace the distinguished variable by the other term
• both are constants
⇒ set L′ = ⊥ and stop

end
end

Output: query Q′(s̄′) :– L′

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (94/95)

unibz.itunibz.it

Databases and Queries

Part 2: Basics of Relational Database Theory

Questions about the Chase Algorithm

Does the Chase algorithm terminate? What is the running time?

What is the relation between a query and its Chase’d version?

Query containment wrt a set of FDs:

How can we define this problem?
Can we decide this problem?

Query minimization wrt to a set of FDs:

How can we define this problem?
How can we solve it?

Relational CQs:

We know that all such queries are satisfiable.
Is this still true if we allow only instances
that satisfy a given set of FDs?

W. Nutt Part 2: Basics of Relational Database Theory InfoInt – 2011/2012 (95/95)

	Databases and Queries

