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Abstract

In applications dealing with ordered domains, the available data is fre-
quently indefinite. While the domain is actually linearly ordered, only some of
the order relations holding between points in the data are known. Thus, the
data provides only a partial order, and query answering involves determining
what holds under all the compatible linear orders. In this paper we study the
complexity of evaluating queries in logical databases containing such indefinite
information. We show that in this context queries are intractable even under
the data complexity measure, but identify a number of PTIME sub-problems.
Data complexity in the case of monadic predicates is one of these PTIME cases,
but for disjunctive queries the proof is non-constructive, using well-quasi-order
techniques. We also show that the query problem we study is equivalent to the
problem of containment of conjunctive relational database queries containing
inequalities. One of our results implies that the latter is I15-complete, solving
an open problem of Klug [JACM, 1988].

*This is a revised and extended version of a paper with the same title which appeared in the
ACM Symposium on Principles of Database Systems, 1992.

tAuthor’s current address: School of Computing Science, University of Technology, Sydney, PO
Box 123, Broadway, NSW 2007, Australia.



1 Introduction

In applications dealing with ordered domains, the available data is frequently
indefinite. While the domain is actually linearly ordered, only some of the
order relations holding between points in the data are known. Thus, the data
provides only a partial order, and query answering involves determining what
holds under all the compatible linear orders. In this paper we study a class of
logical databases containing such indefinite information.

An indefinite order database D consists of a set of ground atomic facts
together with facts of the forms v < v and u < v asserting order relations
between certain constants representing points in a linearly ordered domain.
These order constants may be thought of as a special sort of null value, on
which order constraints may be placed. We adopt an “open world semantics”
for indefinite order databases, in which the relation ‘<’ is interpreted over linear
orders. With respect to this semantics, we establish bounds on the complexity
of determining if the entailment relation DD = & holds, where ® is a positive
existential formula containing order relations.

Example 1.1: The following example illustrates the nature of query an-
swering in indefinite order databases.

A highly classified document is discovered to have been
leaked during the night from the security compound at the
US embassy in Moscow. There are no duplication facilities
in the compound: the guilty party must have removed the
document, copied it, and then replaced it. Thus the culprit
was in the compound at least twice. The security guard’s log
shows agent S entering the compound, then leaving. Some
time later, agent N is recorded entering. The guard’s watch
was broken, so exact times are not recorded. Worse, he con-
fesses to having dozed off frequently during the night, so this
is all the information his log shows. He is dishonourably dis-
charged for dereliction of duty. Interrogation of agent S and
agent N yields the following information: agent S admits to
having been in the compound, and claims that while there,
agent N also came into the compound. Agent S says he left
before agent N did, but does not have a precise recollection
of what times he entered and left. Agent N “takes the Fifth”
and refuses to testify. This evidence does not appear to be
much to go on, but it is enough to encourage the Internal Af-
fairs officer to start further investigations into the activities of
agents S and N: he has deduced that if the evidence is to be
taken at face value, then one of the two was in the compound
twice.

We may formalize this problem as follows. Let the predicate IC'(u, v, )
represent the fact that z was in the compound for a continuous period
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Figure 1: Some models of the data

starting at time w and ending at time v. Then the guard’s log may be
expressed as

]C(Zl, 29, S), ]C(Zg, 24, N), 1< 29<23< 2

Here z; ...z are order constants representing unknown points of time
and the object constants S, N refer to agent S and agent N, respectively.
The testimony of agent S may be represented as

I1C (uq, us, S), IC (ug, uay, N, uy <ug<uz <ty

where again the u; are unknown order constants.

Suppose this set of facts has been entered in a knowledge base. Since
time is a linearly ordered domain, the constraints on the constants z;, u;
underdetermine the temporal relationships holding between these con-
stants in any model of the data. For example, we could have any of the
relationships z1<wui, 21 = w1, or 21 > uy holding in models of the data.
Thus, to obtain models of the data it is necessary to “topologically sort”
the partial order in the data, adding additional constraints so as to ob-
tain a linear order. Figure 1 shows some of the models resulting from
this process. Here the top portion of each model derives from the guard’s
log, the bottom portion derives from the testimony of agent S. Note that
distinct order constants may refer to the same point in the linear order,
e.g., in model (a) z1 = uy.

We also need some integrity constraints: for example, the facts men-
tioned so far have a model (d) in which z; = u; and z3<ug, so that we
have two overlapping, but not identical intervals representing periods for
which agent S was in the compound. Clearly the intended semantics does



not permit this. We need to eliminate models which have such overlap-
ping but not identical intervals. Rather than incorporate such ‘negative’

information in the database, we will handle this by modifying queries.
Thus, let ¥ be the formula

3$t1t2t3t4ﬂ][10(t1, ta, I) A IC(tg, t4, x) N <w<toN
ta<w<ty A (t1<ts V ta<tq)]

which detects the condition we wish to eliminate. (This particular in-
tegrity constraint allows simultaneous departure and reentry.) The effect
of the integrity constraint is then obtained by using the query ¥V &
in place of the query ®, using the fact that D A =¥ = @ if and only if
D = WVv®. The investigating officer may now reach his conclusion by not-
ing that the formula ®(z) = Jt1tatsta[IC (t1, 12, 2) A IC (t3,ta, ) At <t3]
expresses that z entered the compound at two distinct times ¢y, ¢3. Thus
he may pose the query ¥V ®(S) VvV ®(N) (“Did either agent S or agent
N enter the compound twice?”) or, more generally, ¥V Jz®(z) (“Did
someone enter the compound twice?”). We leave it to the reader to verify
that both of these queries should be answered “yes”. Note however, that
the queries WV ®(S) and WV ®(N) should both fail (consider models (a)
and (b)): there is not yet enough evidence for charges to be laid against
either suspect. O

Many applications give rise to indefinite data about linear order. Asin the
example, the linearly ordered domain is often a time line. In the problem of
seriation in archeology [16] each type of artifact is assumed to have been in use
for some historical interval. Absolute data for these intervals is rarely available,
but coincidence of two artifacts in a grave indicates that their intervals over-
lap. Golumbic [12] describes this and many other examples of indefinite order
data in various domains, including behavioural psychology, biology, scheduling
problems in operations research, and combinatorics.

Indefinite order information also arises naturally in a variety of contexts
in artificial intelligence. Allen [2] has pointed out that in natural language
most temporal reports describe relations between intervals, rather than give
absolute times. He proposes an algebra based on thirteen primitive temporal
relations between intervals, such as “Interval 1 overlaps interval J” and gives an
algorithm for making (incomplete) inferences about interval relations. Another
example of indefinite order data in artificial intelligence is nonlinear planning
[28]. Here, rather than the solution to a planning problem being a linear se-
quence of actions, one constructs a partially ordered set of actions. This allows
some flexibility in the order of execution of actions, and is also able to express
concurrently executable plans. However, it is still necessary to reason about
the compatible linear orders, since these correspond to the possible executions
of the plan.

We have stated the problem we consider in terms of indefinite information,
but it is closely related to optimization problems for relational database queries
containing inequalities, which have been studied by Klug [17]. A query Q1 is
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said to be contained in a query Q2 if in every relational database (containing
only definite information) the answer (set of tuples) to @1 is a subset of the
answer to Q2. Klug noted that the classical homomorphism theory [5] for con-
tainment of conjunctive queries, which shows that this problem is NP complete,
does not extend to queries containing inequalities (although it does work for a
subset of these queries, the semi-interval queries.) He was able to provide an
upper bound of I14, but no lower bound. We establish in Section 2 a reduction
from query processing in indefinite order databases to query containment. Us-
ing this reduction, one of our results (Theorem 3.3) provides the missing lower
bound of I115-hard.!

There exists a substantial literature on reasoning about constraints, which
includes a number of studies of complexity issues. In the database field, the
problem of inferring inequalities from other inequalities has been studied in
connection with predicate locking [27]. The more general problem of inferring
linear inequalities of the form az+by+... < p from other such inequalities has
been considered in the context of applications to constraint logic programming
[21, 29].

The complexity of reasoning about order relations has also received some
attention in the Al literature. Vilain et al. [33] study the complexity of in-
ferring relationships between intervals in Allen’s interval algebra, that is, they
study the complexity of determining whether an interval relationship [1 Rl
follows, where R is a relation in the interval algebra. They show that even
this problem has NP hard complexity. As a remedy they propose to restrict
the expressiveness of the data to a point based language with relations ‘<’, ‘<’
and ‘#’. The problem of deriving point relationships, that is, the problem of
determining if uRv follows for R € {<, <, #}, has polynomial time complexity
[30, 3]. Golumbic and Shamir [11] present a finer grained analysis of the com-
plexity of inferring interval relations in the interval algebra, showing the effect
on complexity of various restrictions on the set of primitive relations.

However, as indicated by Example 1.1, queries about the possible relation-
ships between points or intervals are only a very restricted subset of the queries
one might wish to ask a database with indefinite data about linear order: a
minimal class would seem to be the positive existential queries, built using exis-
tential quantification, disjunction and conjunction from atomic formulae which
involve proper predicates as well as the order predicates ‘<’ and ‘<’. While
much is already known about the complexity of querying indefinite databases
containing null values subject to ‘#£’ constraints only [32, 1], there does not
appear to have been any analysis of the complexity of this more general class
of queries in indefinite order databases, aside from the related work of Klug al-
ready mentioned. Qur contribution in this paper is to provide such an analysis.

We consider the following measures of complexity, introduced by Vardi [31].

'Kanellakis et al. [15] have previously shown that containment of conjunctive queries using
quadratic equation constraints is TT}-complete. They also consider data complexity for a notion
of (definite) constraint databases different from ours, in which constraints occur as conditions on
universally quantified tuples.



Combined complezity is the complexity of the set {(D,®)|D |= ®}. This mea-
sures complexity of query answering as a function of both the size of the query
and of the database. In most cases, this is not a realistic measure of complexity
in database applications, since a database is generally many orders of magnitude
larger than a query. Data complexity takes this into account by factoring out
the size of the query, which may be presumed to be small. The data complexity
of a (fixed) query ® is the complexity of determining membership in the set
{D| D | ®}. Note that this captures the optimal complexity of any algorithm
for answering ®, but ignores the cost of producing this algorithm, i.e., the cost
of compilation. This means that data complexity results should be interpreted
with some care. As we will see in Section 6, it is sometimes possible to show
that data complexity is low without knowing how to compile queries to run
efficiently. For this reason we take some pains to develop combined complexity
results, since these may provide the only practicable algorithms. For complete-
ness we also consider expression complexity. The expression complexity of a
database D is the complexity of the set {& | D | ®}.

Our results show that even the data complexity of very simple forms of
queries is intractable. Thus, further constraints are required to obtain tractable
inference problems. We consider a number of different parameters, and provide
a characterization of the classes of problems stated in terms of these parameters
that have polynomial time complexity. One of the constraints we consider
is severe: it is the restriction that predicates be monadic. While monadic
predicates are insufficiently expressive to represent the interval data required
in many applications, this restriction is nevertheless of interest.

Example 1.2: In gene alignment in biology one wishes to compare a
number of sequences of bases, represented by symbols C',G, A and T,
for evidence that they are related. Mutations correspond to insertions
and deletions of fragments in such sequences, so it is necessary to permit
“gaps” when doing the comparison: see Figure 2 for a sample alignment.
The space of possible alignments may be represented by an indefinite
order database in which C,G, A and T are monadic predicates and a
sequence $18; ...5, € {C,G, A, T}" corresponds to the facts

s1(ur), sa(uz), vy 8n(tn), 1 <ug<...<uy,.

Using the query modification method for integrity constraints used in
Example 1.1 one may represent various restrictions on the acceptable
alignments: disjoining Jt[A(t) A G(t)] disallows the alignment of A and
G (This constraint is violated at the leftmost position of the alignment
in Figure 2). Algorithms for query answering may then be used to an-
swer the question “does there exist an alignment of the sequences which
satisfies the integrity constraints?” O

Certain queries using m-ary predicates also reduce to the monadic case.
Suppose, for example, that all predicates have a single “temporal” argument
that may participate in order relations. That is, we are interested in facts
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Figure 2: Aligning two sequences

holding at time points rather than over intervals. Then queries which quantify
only over time reduce to the monadic case. For example, consider the query

Juv[P(a,u) A u<v A P(b,v)]

expressing that there exists a time when P(a) holds and a later time when P(b)
holds. This query may be answered using algorithms for the monadic case by
treating the expressions P(a,z) and P(b,z) as (distinct) monadic predicates
on the variable z.

Surprisingly, even the restriction to monadic predicates is not enough to
obtain tractable combined complexity. Also, while data complexity under this
constraint is tractable, the proof is non-trivial. Thus, although the monadic
case has very limited expressive power from the point of view of applications,
its non-triviality makes it of theoretical interest. Moreover, we feel that an un-
derstanding of the monadic case is a prerequisite for finding tractable classes of
problems with higher arity. It is therefore worthwhile to investigate additional
constraints.

One constraint that leads to tractability in the monadic case is a bound on
the width of the database. Width is a parameter of the partial order that the
data imposes on the order constants. Informally, it measures the maximum
number of “concurrent” order constants, which potentially refer to the same
point in the linear order. For example, suppose that the database is a record of
the reports of a number of agents independently observing the world. If each
provides a linearly ordered set of observations, then the width of the database
is the number of agents. The database of Example 1.1 has width two. A bound
on the width of the database appears to be a reasonable constraint for some
applications.

We also consider a constraint on queries in the monadic case. A conjunctive
query is said to be sequential if its order variables are linearly ordered by its
order atoms. For example, the query

Jeyzlz<y<z A P(z) AQ(z) A P(y) ANQ(2)]

is sequential. Sequential queries ask: “does a particular sequence of events
occur?”

We now summarize the results presented in the paper. We begin with a
study of the connections between the three different consequence relations =,
obtained by choosing for the class O of linear orders either the class Fin of
finite linear orders, the class Z of linear orders isomorphic to the integers, or

the class Q of dense linear orders isomorphic to the rationals. We establish



predicate complexity type

arity data expression combined

n-ary co-NP complete | NP complete I15 complete
monadic PTIME PTIME co-NP complete

Table 1: Complexity of query problems: n-ary predicates

query database width
type bounded unbounded
sequential PTIME PTIME
non-sequential || PTIME | co-NP complete

Table 2: Combined complexity of conjunctive queries: monadic predicates

polynomial-time reductions that enable us to transfer both upper and lower
bounds for the case O = Fin to the other two. (Thus, all the results we state
hold under any of these semantics.)

We then turn to an analysis of complexity for the semantics with O =
Fin. In their general forms, the query problems considered turn out to be
(probably) intractable, as indicated by the first row of Table 1. Here each
entry gives a complexity class for which the corresponding query problem is
complete. For example, the entry in the first row of the first column indicates
that (1) every query has data-complexity in co-NP and (2) there exists a query
with co-NP hard data-complexity. In each case the lower bound result can
be established using conjunctive queries and the upper bound result holds for
disjunctive queries as well as conjunctive queries.

The lower bound results require at least binary relations. As indicated
by the second row of Table 1, we do obtain an improvement by restricting
to monadic predicates. Conjunctive monadic queries may be shown to have
PTIME data complexity by a straightforward “greedy” algorithm. However,
for disjunctive queries the proof of PTIME data complexity is non-trivial: we
present for the disjunctive case a non-constructive proof, using well-quasi-order
techniques, which yields the fact that the data complexity is in PTIME, but
without explicitly describing for each query a specific algorithm which solves
the problem with that complexity.

The proof that conjunctive queries using monadic predicates have co-NP
hard combined complexity involves non-sequential queries and databases of
unbounded width. However, if we restrict either to sequential queries or to
databases of width bounded by a constant, combined complexity may be shown
to be in PTIME, as indicated in Table 2.



We actually give two algorithms showing that conjunctive monadic queries
have PTIME combined complexity over databases of bounded width. One
works only for conjunctive queries, and merely decides entailment; the other
is less efficient, but may be modified to yield a procedure which either de-
clares that the query is entailed, or enumerates all the (minimal) models of the
database in which the query is false, with no more than a polynomial amount of
time between outputs. (The latter approach also works for disjunctive queries,
but has exponential complexity in the number of disjuncts.)

The structure of the paper is as follows. Section 2 considers the relations
between a number of different semantics for indefinite order databases, depend-
ing on the type of the linear order. Section 3 is concerned with upper and lower
bounds for queries containing predicates of arbitrary arity. The remainder of
the paper studies the monadic case. Section 4 deals with upper and lower
bounds for conjunctive monadic queries. A number of the results developed
in this section are crucial to the proofs in later sections. Section 5 deals with
expression and combined complexity in the disjunctive monadic case. Section
6 is devoted to the non-constructive proof that data complexity of disjunctive
monadic queries is in PTIME. In Section 7 we briefly consider the generaliza-
tion of indefinite order databases obtained by admitting inequality constraints.
Section 8 concludes by discussing further work.

2  Definitions and Preliminary Results

This section is devoted to setting up the semantic framework for order databases
by formally defining three consequence relations, depending on the structure
of the linear order in models. We establish reductions between these three
relations that permit us to focus on just one type of semantics, the finite model
semantics, and give a technical characterization of this semantics that will be
helpful in establishing complexity results.

We work with a two sorted first order language, containing a sort of objects,
as usual, as well as an order sort, representing points in a linearly ordered
domain. Thus, we require that the arguments of predicates be typed, and that
the occurrence of constants and variables respect the typing. The language
contains no function symbols. Atomic formulae are of one of two kinds:

1. proper atoms of the form P(a), where P is a predicate and a is a tuple
of constants or variables of the appropriate sort, or

2. order atoms of the form v < v or u < v, where w and v are order constants
or variables.

An indefinite order database D consists of a finite set of ground atoms of either
variety. Queries will be positive existential sentences of the first order language
based on the proper predicates and the relation ‘<’. That is, queries are con-
structed from proper atoms and order atoms using only the operators ‘A’ ‘V’
and ‘F’. A query that does not contain ‘V’ is said to be conjunctive. For the



purposes of complexity analysis we assume queries are in disjunctive normal
form, i.e., are disjunctions of conjunctive queries. (However, for brevity we will
sometimes write queries in non-normal form: these are to be understood as
denoting equivalent disjunctive normal form queries.)

We will be concerned with restricted classes of databases and queries in
which just one of the order relations ‘<’, ‘<’ may appear. When a result applies
to such a restricted case this will be indicated by prefixing the word ‘database’
or ‘query’ by the set of relations permitted. For example, “{<}-databases”
refers to databases in which the relation ‘<’ does not occur.

A structure for an order database D will be a (two-sorted) first-order struc-
ture M in which the relation ‘<’ denotes a linear order <js on the order sort,
and in which u < v is interpreted as u < vV u = v. Such a structure will be a
model of a database just in case it supports the database as a first order theory.
We reserve the word ‘points’ to refer to elements of the order sort; elements
of the object sort will be called ‘objects’. We do not make a unique names
assumption [26] in this paper: distinct constants may refer to the same point.
For order constants this is because we explicitly wish to allow distinct order
constants to refer to the same point; for object constants the adoption of the
unique names assumption would have no effect on query entailment, since we
deal only with positive existential queries.

It is convenient to adopt a simplifying assumption: queries will be assumed
not to contain constants. By a well known construction, there is no loss of
generality in this. We may introduce a new monadic predicate P, for each
constant symbol u, and add the facts P,(u) to the database. Then the query
®(u) containing the constant u is equivalent to the query 3t[P,(t) A ®(¢)] in
which the constant has been eliminated. The advantage of this construction is
that it enables us to discard from models the mappings interpreting constants,
when determining satisfaction of a query. This will be important in some of
our proofs. This assumption also simplifies the treatment of equality.

We will consider various semantics for databases, corresponding to different
restrictions on the linear order. If O is a class of linear order types we define

Modo (D) ={M | M | D and < is of type O}.

The class O will be either the class Fin of finite linear orders, the class Z of
linear orders isomorphic to the natural numbers or the class Q of dense linear
orders isomorphic to the rationals. For each class O we obtain a consequence
relation |=p defined by

D Eo® iff ME®forall M € Modo(D).

For the restricted form of database and query we are considering, these conse-
quence relations are closely related, as we now show.

First, we need a standard model theoretic notion [6]. A homomorphism
from a model M to a model M’ is a mapping A from the domain of M to the
domain of M’ such that
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e If @ is of sort object (order) then h(a) is of sort object (order).

e If the interpretation of constant w in M is «, then the interpretation of
uwin M'is h(a).

e For all relations P, including order relations, and all elements a; of the
domain of M, if P(ay,...,a,) holds in M then P(h(ay),...,h(ay)) holds
in M'.

It is well known that if there exists a homomorphism from M to M’ then for
every positive existential query @, if M = ® then M’ = ®.

Proposition 2.1: The following containments hold between the conse-

quence relations: =rin C |z C F=q-

Proof: We show that D Ez® implies D =q@®, by proving the contrapos-
itive. Suppose that D =q®. Then there exists a model M € Modg(D) with
M B ®. Let S be the image under the interpretation mapping of the constants
of D in M. Add additional elements of the order domain of M to S so that
the points in S, with the order induced from M, comprise an order isomorphic
to Z. Now let M’ be the restriction of the model M to the resulting subset of
the domain. Clearly there exists a homomorphism from M’ to M, from which
M' [£ @ follows. Hence D [£z® also, since M’ € Modg(D). This shows that
D Ez® implies D [=q®. A similar argument shows that D =pin® implies
D IZZ(I). O

To see that these consequence relations are inequivalent, observe that
z3tita[t1<t2] but not | pinItita[t; <ts], since Fin contains the linear order
consisting of a single point. Similarly, note that if D = {P(u), P(v), u<v} and

b = Eltltgtg,[P(tl) N1 <ty<itz A P(td)]

then D [=q® but not D [=7z®. In both of these examples we have variables
which occur only in order atoms. This is in fact a necessary condition for such
examples. Say that a query is tight if in each disjunct, every variable occurs
in some proper atom. (Thus, none of the queries in the present paragraph is
tight, since in each the variable ¢; appears in no proper atom.) Then we have
the following;:

Proposition 2.2: If ® is a tight query then D Egi,® iff D Ez® iff
D =q9.

Proof: By Proposition 2.1 it suffices to show that D |=q® implies D =pin ®.
We establish the contrapositive. Suppose that there exists M € Modgin(D)
with M [ ®, where the order domain is the set {0...n}. Modify M by
enlarging the order domain to the set of rational numbers. This produces
a model M" in Modg(D). Suppose that M’ |= ® and let # be a satisfying
assignment for the variables of ®. Since @ is tight, for each variable ¢ we must
have 6(¢) in the set {0...n}. But this implies M |= ®, a contradiction. Thus
M' £ @, establishing that D [Eq®. O
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In many applications, queries will generally be tight. For example, con-
sider relational database queries containing inequalities. In formulating such
queries we are generally interested in comparing data values retrieved from the
database. This means that we are only interested in values actually occurring
in some database relation. The result shows that for these purposes the three
types of semantics are equivalent.

However, it is sometimes natural to write non-tight queries. We have already
seen an instance of this in Example 1.1, in which we used the query

3$t1t2t3t4ﬂ][]0(t1, t2, .Z‘) A ]C(td, t4, I) Nt <w<tyg\
ta<w<ty A (t1<t3 Vt3<ts)]

to express the integrity constraint that overlapping intervals of the form IC(u, v, z)
must be identical. Note that the occurrence of w in this query is not tight.
Therefore it is of some interest to understand the relations between the three
semantics for non-tight queries. We will establish polynomial time reductions
of the relations |=q and =z to the relation |=pin. These reductions enable
query answering procedures for one semantics to be used for another, with no
more than a polynomial loss in complexity. We note that these reductions
will be established in one direction only, so they do not serve to transfer lower
bounds on complexity from the relation =gin to the relations [=q and =z.
The reason we do not need to establish the converse reductions is that all of
the lower bounds to be proved for |=rin will make use of tight queries only, so
these bounds apply to all three semantics, by Proposition 2.2.

We begin with the reduction for |Fz. Suppose that the query & contains
n distinct variables. Given a database D, let Iy,...,l,,71,...,7, be 2n new
constants. Add to D the atoms [1<lo< ... </, and ri<rs<...<r,, as well as
l,<u<ry for each order constant u of D, and call the resulting database D’.

Proposition 2.3: Forevery database D, D [z ® if and only if D' Epin®.

Proof: We first show that D' Epi,® implies D =z®. Suppose D' Epin®
and let M € Modz(D). Consider the finite model M’ obtained from M by
restricting the domain to the image of the constants in D. Add n points u; <
... < uy, less than the least point in M’ and another n points v; < ... < v,
greater than the greatest point in M’', and interpret /; as u; and r; as v;, for
i =1...n. The resulting structure M" is a clearly a finite model of D’. Since
D' ErFin®, we must have M"” = ®. There exists a homomorphism from M"
to M, so it follows that M |= ® also. This establishes that D’ Epin® implies
D |Ez9.

For the converse, suppose that D |=z®. Let M’ be a finite model of D'. By
restricting the domain to the image of the constants of D’ in M’, restricting
the proper facts to just those needed to support D, and renaming elements of
the order domain, we obtain a finite model M” of D’ such that

1. The order domain of M" is the set {—n,...,k+ n}.

2. The order constants of D are interpreted by M" in the set {0,...,k}.
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3. The constant /; is interpreted in M" as —i, and the constant r; is inter-
preted as k+ 1, fori=1...n.

4. There exists a homomorphism from M" to M’.

Let M be the model obtained from M” by extending the order domain to Z.
Since D =z® there exists a satisfying assignment 6 for ® in the model M.
Consider the order variables V' of ® that # maps outside of the set {0,...,k}.
By construction of M, none of these variables can occur in a proper atom in &,
hence they occur only in order atoms. There are at most n of these variables.
Hence, by changing the assignment # on V', we may construct an assignment 6’
that maps the variables V' into the set {—n,...,k+ n} without changing the
order relationships that hold. That is, for any order variables u, v occurring in
¢, 0'(u) < #'(v) if and only if (u) < 8(v). It then follows that M" |= &, hence
also that M’ = ®. This establishes that D |Ez® implies D' =g, ®. O

It is also possible to give a reduction of the semantics based on the rationals
to finite models. This reduction involves showing that over the rationals, every
non-tight query is equivalent to some tight query. It is convenient to intro-
duce some auxiliary notions first. We begin by describing a normal form for
databases and queries which simplifies some of our results. Consider the follow-
ing rules, which may be used to transform a database or conjunctive query. By
considering each disjunct independently, they may also be used to transform a
disjunctive query.

N1. If there exist atoms uy < ug, ..., Up_1 < U, and wu, < up, then identify
Uy .o oy Unp.

N2. Delete any atom of the form u < u.

When applying rule N1 to transform a query we replace all occurrences of
Ug, ..., U, by u; and delete the quantifiers for us, ..., u,. (Recall that we have
assumed that queries do not contain constants.)

The rules N1 and N2 are valid in the sense that if D is transformed to D’
and @ is transformed to ®' then D = @ iff and only if D' = ®'. This is clear
for rule N2. Validity of rule N1 when applied to a query is also clear, since
w < uy < ... < uy, < up is equivalent to wy = uy = ... = u,. Validity of
N1 when transforming a database relies on the fact that queries do not contain
constants. We will say that a database or conjunctive query is normalized if it
is invariant under application of rules N1 and N2. Since the transformations are
valid and terminate, we may assume henceforth that all databases and queries
are normalized.

Now, we introduce the notion of the order graph associated with a database
or conjunctive query. This is the directed graph whose vertices are the order
constants of D, or the order variables of the query @, respectively. For each
atom u < v in the database or query there is an edge from u to v labelled ‘<’,
and for each atom u < v there is an edge from u to v labelled ‘<’.
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A normalized database or conjunctive query is inconsistent if and only if its
order graph contains a cycle. For, by rules N1 and N2 there can be no cycles
containing only edges labelled ‘<’. On the other hand, if there exists a cycle
containing an edge labelled ‘<’, then there exists a constant (or variable) u such
that the inconsistent atom u < u is entailed. Conversely, if the order graph
is acyclic (that is, if it is a directed acyclic graph, or dag) then the database
or query is consistent. This is simply the well known fact that it is possible
to “topologically sort” a dag, that is, produce a linear order satisfying all the
order relations entailed by the dag. We will assume throughout that we are
dealing only with consistent databases and queries.

Note that in topologically sorting an order dag, in the usual sense of the
term, we in fact satisfy all ‘<’ edges by means of strict inequalities. We will
use the phrase “topological sort” of an order dag to refer to a slightly more
general class of compatible linear orders than usually meant by this term. For
us, a topological sort will be any mapping f from the vertices of the dag onto a
linearly ordered set, such that f preserves the order relations. Such mappings
may be constructed by the following nondeterministic procedure.

If there is no edge to a vertex in a dag we say it is minimal. The usual
topological sorting process proceeds by repeatedly selecting minimal vertices.
Instead, we define a vertex v of an order dag to be minor if there does not exist
an ascending path ending in that vertex which passes through an edge labeled
‘<’. The sorting procedure will operate in a number of stages. At each stage
we have a partially constructed linear order, together with a subgraph of the
original graph, which contains all the vertices not yet mapped into the linear
order. Initially the linear order is empty and the graph of unsorted vertices is
the original graph. We repeat the following steps until the entire graph has been
sorted. First, we non-deterministically select some set S of vertices, subject to
the constraints

S1. Each element of S is minor in the subgraph of unsorted vertices.
S2. If w € S and there is an edge from v to u labelled ‘<’ then v € S.

We map the elements of S to the ‘next’ point of the finite linear order being
constructed, and delete the vertices S from the graph of unsorted vertices.

Example 2.4: Suppose we are given the normalized set of order atoms
u<v<w,u<t< w. The minor vertices of the corresponding graph
are u and t. We demonstrate one of the topological sorts of this graph.
We begin with an empty linear order and the original set of atoms. The
minimal unsorted vertices at this stage are u and ¢. Let us choose S =
{u,t} as the elements mapping to the first point z; of the linear order.
Deleting the elements in S leaves the graph v < w. This has one minor
vertex v, so we now must take S = {v} as the set of vertices mapping
to the next point zy of the linear order. Deleting these vertices leaves
just the vertex w, which we map to the last point z3 of the linear order.
Thus the topological sort obtained consists of the linear order with three
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points z1<zy<zs, together with the mapping f with f(u) = f(t) = =1,
f(v) = z2 and f(w) = z3. Other topological sorts of this order are
obtained by making different choices for the set of minor elements S. O

To see that the nondeterministic algorithm indeed results in a mapping
satisfying the order relations, note that if the database contains an atom u < v,
then v will not be a minor vertex until « has been deleted. Hence u will be
mapped to the linear order first, and v < v will be satisfied. For a constraint
u < v, note that if v is an element of S and w has not yet been mapped to
the linear order, then by rule S2 the vertex u is an element of S also, so the
constraint will be satisfied with f(u) = f(v).

Conversely, every mapping f from an order graph onto a linear order which
preserves the order relations can be obtained as a result of the topological
sorting procedure. To show this, note that we may choose at the k-th stage the
set S = {v|f(v) = tx}, where t; is the k-th element of the linear order. It is
straightforward to verify that these sets satisfy constraints S1 and S2.

The order atoms of a database need not correspond to all the order relations
between order constants that may be inferred from the database. For example,
if we have atoms v < v and v < w then we may infer u < w. The following
rules may be used to add such derived atoms to a database (or query).

1. If w and v are distinct variables and there exists in the graph a path from
u to v then add the atom u < v.

2. If there exists in the graph a path from u to v through an edge labelled
‘<’ then add the atom u < v.

If a database or conjunctive query is closed under these rules then we will say
that it is full. A disjunctive query is full if each disjunct is full. For example,
the query

Juow[Q(u, v, w) A u < w]V Juvw[@Q(u,v,w)Au<vAv<wAu < w

is full, but the query Juvw[Q(u, v, w) A u < v Av < w]is not, since it does not
contain the derived atom u < w. It is not difficult to show that every query is
equivalent to some full query.

We may now establish the reduction for the dense order semantics. Let ®
be a full query. Delete from each disjunct of & any order variables that occur
only in order atoms in that disjunct, (in other words, those that do not occur
in any proper atom) as well as any quantifiers or order atoms containing those
variables, and call the resulting query ®’. For example, if ® is the full query

Juvw[Pu,w)Au <vAv<wAu< w]

in which the variable v does not occur in any proper atom then @’ is the query
Juw[P(u, w) Au < w] in which all order atoms containing this variable have
been deleted.
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Lemma 2.5: If ¢ is a full query then D [=q® if and only if D q®’, for
every database D.

Proof: We assume without loss of generality that & is consistent. It is
obvious that D |=q® implies D |=q®’. For the converse, assume that D =g’
and let M be any model in Modq (D). Then there exists a satisfying assignment
6’ for some disjunct W’ of ®'. Let S be a set of order constraints over variables
U. Given a subset V of U, let T be the set of constraints in S which involve
only the variables V. It is known [3] that if S is full then any assignment of
V satisfying T may extended to an assignment of U satisfying S.? Since the
variables deleted from W occur only in order atoms, it follows from this that 6’

may be extended to a satisfying assignment € of the corresponding disjunct ¥
of ®. O

Corollary 2.6: For every full query ® and database DD we have D =q®
if and only if D |=pin®’
Proof: Follows directly from Proposition 2.2 and Lemma 2.5 on noting that
the query @ is tight. O

Propositions 2.3 and 2.2 and Corollary 2.6 show that it suffices to restrict
attention to finite models. In fact we may use an even smaller class of models,
the minimal models, which are just those models obtained from the atoms of the
database by interpreting the object constants as themselves, and interpreting
the order constants by topologically sorting the graph of the database. We write
Mod(D) for this class of models and let = be the corresponding consequence
relation.

Example 2.7: Let D be the database consisting of the order atoms u <
v < w, u <t < wfrom Example 2.4 together with the proper atoms
B(a,t), B(b,w), in which a and b are object constants. Then one minimal
model is the model with object domain {«, b} and order domain consisting
of the three points z1<zy<z3. The object constants are interpreted as
themselves, and the order constants are interpreted by the mapping f
with f(u) = f(t) = z1, f(v) = 22 and f(w) = z3 obtained from the
topological sort of Example 2.4. The atomic facts holding in the model
are B(a,z3), B(b,23). O

We now establish a result which explains why we use the term “minimal
model” to refer to the models obtained by topologically sorting a database.
The set of all models (with any type of linear order) may be (quasi) ordered
by M < N when there exists a homomorphism from M to N. The following
states that the minimal models of a database are in fact minimal in this order.

Proposition 2.8: For every model N (of any order type) of a database
D there exists a minimal model M with a homomorphism A : M—N.

2This result is closely related to Fourier’s method [7] for elimination of variables from linear
inequality constraints of the form a1 X; + ... 4+ a, X,, <b.
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Proof: Let the model N interpret the object constants of D by the function
f and the order constants by the function g. For the object domain of the
model M we take the set of object constants of D, with each object constant
interpreted as itself. For the order domain of M we take the image of the
function g, with each order constant u interpreted as g(u). The linear order
on the order domain of M is that induced from N. Finally, the proper atoms
holding in M are just those that are the image under the interpretation of
the constants of some proper atom of D. Let h be the function that maps an
element a of the object domain of M (i.e., a constant of D) to f(a), and acts as
the identity function on the order domain. It is straightforward to verify that
this is a homomorphism, and that M is in fact a minimal model. O

Corollary 2.9: For every database D and query ® we have D = ® if and
only if D EFin®.

Proof: Immediate from Proposition 2.8. O

The reductions of this section show that even if we are interested in inte-
ger and rational order it suffices to restrict our attention to the finite model
semantics. For the remainder of the paper we will develop our results with
respect to this semantics. However, it is technically more convenient to work
with minimal models, so we will state and prove our results in terms of the
consequence relation |=. Corollary 2.9 provides the justification for this.

The following parameter of databases will be important in the sequel. Let
U be the set of vertices of a dag G. A subset A of U is an anti-chain of G if
there does not exist in G a path from any vertex u € A to another vertex v € A.
The width of G is the maximum cardinality of an antichain of G. The width of
a normalized database or conjunctive query is the width of the associated dag.

If for two order constants u, v in a database the set {u,v} is an anti-chain,
then they may be viewed as being potentially concurrent. In models of the
database any of the relations u < v, v = v or v < w may hold. Intuitively, the
width of a database is a measure of the extent of indefiniteness at each stage
of a topological sort of the database. For example, a database recording the
reports of k observers, each providing a linear sequence of events, has width k.
We will see below that width of databases is an important parameter in the
complexity of query processing. Broadly speaking, query processing has lower
complexity in databases with bounded width.

We comment that if D is a database of width £ then we may assume that
no vertex in the graph of D has more than 2k successors. For, given a vertex
u, all atoms of the form u < v are redundant except those with v minimal in
the subgraph of D generated by {w|D |= u < w}. There can be at most k such
minimal vertices. A similar argument applies to atoms of the form u < v. The
number 2k is optimal, as may be seen from the database D = {u < v; | i =
1...k}U{U2‘ < w; | i:l...k}U{u<w2~ | i=1...k}.

We now discuss a connection between the indefinite information query prob-
lem we study in this paper and a problem arising in the optimization of queries
in relational databases [17, 30]. A relational database may be viewed as a fi-
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nite structure for sorted first order logic. In case a linear order is of interest
this may be treated as an additional relation of the structure - unlike the data
relations we allow this to be infinite. This means that relational databases
with order are just instances of models of indefinite order databases with finite
object domains.

A relational conjunctive query with inequalities is an expression () of the
form {x : ®(x,y)} where x and y are disjoint sequences of variables and ®(x,y)
is a conjunction of proper and order atoms with variables among x,y. The
answer set Ans(Q, M) of a conjunctive query Q) in a database M is the set
of tuples (a) of appropriately sorted elements of the domains of M such that
M | Jy®(a,y). In the degenerate case that the sequence of variables x is
empty we take the answer set to be the set containing only the null tuple () if
M | Jy®(y), and the empty set otherwise.

If (1 and )2 are two relational queries then ); is said to be O-contained
in ()9 if for all relational databases M in which the order relation is of type
O we have Ans(Qq1, M) C Ans(Q2, M). Testing for containment allows for
the optimization of conjunctive queries by the elimination of redundant atoms.
The following shows that containment is at least as hard as query answering in
indefinite order databases.

Proposition 2.10: Combined complexity of conjunctive queries in indef-
inite order databases with respect to = is equivalent under PTIME
reductions to O-containment of relational conjunctive queries with in-
equalities.

Proof: Given an indefinite order database D and a conjunctive query @,
we construct queries (01 and (J5 such that () is contained in ()5 if and only if
D E ®. If D is the set of atoms {A;,...,; A} take Q1 = {() | A1 A...A A},
and take Q2 = {() | ®}. It is plain that if M is a database with order of type
O then M = D iff () € Ans(Qq1, M) and that M | & iff () € Ans(Qq2, M).
Since () is the only potential answer to these queries, it is immediate from the
definitions that D = @ iff @1 is O-contained in ()z. (We use the fact that,
by an argument similar to that for Corollary 2.9 the relation D o ® is the
same whether it is defined with respect to models with finite object domains
or object domains with arbitrary cardinality.)

Conversely, suppose we are given queries @)1 = {x : ®1(x,y)} and Q3 =
{x: ®y(x,2)}. Define the database D to contain the atoms in the conjunction
®;(a,b) where the a and b are fresh constants of the appropriate sorts, and
define ® to be Jz®,(a, z). It is straightforward to show that @)1 is O contained
in Q2 if and only if D Ep ®. O

We will use this result to obtain a lower bound on containment of relational
conjunctive queries with inequalities in the next section.
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3 Databases with n-ary Predicates

In this section we begin our study of the complexity of query problems in
indefinite order databases, establishing both upper and lower bounds for these
problems in their most general form. These bounds will show that queries
are intractable under each of the three types of complexity measure. The rest
of the paper will be devoted to a search for natural restrictions under which
complexity decreases. In this section, and for the remainder of the paper, we
confine ourselves to results for the finite model semantics.

Upper bounds for the finite model semantics follow directly from the obser-
vation in the previous section that it suffices to restrict attention to minimal
models. It is clear that the non-deterministic process constructing the minimal
models operates in a polynomial number of steps. Thus, noting that positive
existential queries have expression complexity in NP with respect to first order
structures, we have the following immediate consequences of Corollary 2.9. (By
means of the reduction of Proposition 2.10, Part (1) is equivalent to a bound
on query containment previously noted by Klug [17].)

Proposition 3.1: (1) The combined complexity of indefinite order databases
and positive existential queries is in TT5.
(2) The data complexity of positive existential queries in indefinite order
databases is in co-NP.
(3) The expression complexity of indefinite order databases with respect
to positive existential queries is in NP.

This result holds for disjunctive as well as conjunctive queries. We now set
about showing that these bounds can be met by corresponding lower bounds
stated in terms of conjunctive queries.

Theorem 3.2: There exists a conjunctive {<}-query containing only bi-
nary predicates with co-NP hard data complexity on {<}-databases.

Proof: The proof is by reduction from monotone 3-satisfiability [10]. We
show that there exists a query ® and a polynomial time reduction from sets of
monotone 3—clauses § to {<}-databases D such that D = & if and only if § is
unsatisfiable. Given object constants a, b, c and order constants u, v, w, t define
the database D(a,b, c;u,v,w,t) to be the set of atoms

{P(u,a), P(u,b),u<v, P(v,a), P(v,c),v<w, P(w,b), P(w, c),
P(t,a), P(t,b), P(t,c)}

depicted in Figure 3. Let ¢(z) be the query
Eltltgt'g,[P(tl, iE) ANt1<ty A P(tz, .’f) A ty<tsz A P(t'g,, x)]

also shown in Figure 3. The combination of this database and query “expresses”
the disjunction “a or b or ¢” in the following sense.

D1. In every model of D(a,b,c;u,v,w,t) either ¢(a) or ¢(b) or ¢(c) holds.
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Figure 3: Simulating Ternary Disjunctions

D2. There exists a model in which ¢(a) is true but ¢(b) and ¢(c) are false.
(Namely, the model in which ¢ = w.) Similarly, there exist models in
which only ¢(b) is true, or in which only ¢(c) is true.

Suppose we are given a set S of positive 3—clauses over a set of proposi-
tional letters L. The simulation of ternary disjunctions just described will be
used to construct a {<}-database D(S) and a query #(z) for which the set
{l e L| M E ()} simulates, as M varies over minimal models of D(S), the
set of valuations satisfying the set S. One apparent way to do this is to let the
database contain a component of the form D(ly, 2, l3;u, v, w,t) for each clause
[y VI3V I3. Unfortunately, propositional letters may occur in more than one
clause and this may result in interference among the components. Instead, we
will generate disjunctions independently and then transmit these disjunctions
to the propositional letters. Specifically, for the i-th clause [;; V /; 3V [;3 in
S we introduce new object constants a;, b;, ¢; and order constants w;, v;, w;, t;,
and let D; be the set of facts

D(ag, by, c55 w5, v, wi, 1) U{Q (L, a;), Q L2, b5), QLi3, ) }-

Note that we treat the propositional letters [ as object constants. Define D(S)
to be the union of the databases D;, and let ¥ (z) be the query Jt[Q(z,t) A ¢(t)].
We can do the same for a set S’ of negative clauses, using complemented

constants [ and facts {Q (m, (1,2-) ,Q (m, bl-) ,Q (m, ('Z)} instead. Take F to be
the set of facts of the form C'omp (l, 7) for [ in the set L of propositional letters.

Then given a set S of positive 3—clauses and a set S’ of negative 3-clauses, we
claim that D |= ® exactly when the set of clauses S U S’ is unsatisfiable, where
D =D(S)UD(S)UF and ® = Jzy(¢p(z) A Comp(z,y) AY(y)).

To see this, assume first that D = ®, and suppose V is a valuation of L
which satisfies S U S’. Then for each clause I;1 V ;2 V l;5 in S there exists
an index j such that V(/; ;) = 1. By the construction above we may choose
a model M; of D; such that M; |= 9(l; ) only if k = j, and similarly for the
negative clauses. Composing these models, we obtain a model M of D with the
property that M = ¢ (I) implies V(I) = 1 and M |= w(i) implies V() = 0. But
since M is a model of D, we must have D |= ®. This is readily seen to imply
that there exists a propositional letter [ such that both V' (/) = 1 and V(1) = 0,
a contradiction.
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Figure 4: A width two database

Conversely, suppose that M is a model of D with M }= ®. We construct a
valuation V' as follows: if M = ¥(l) we put V() = 1, else V(I) = 0. We claim
this is a satisfying valuation of S U S’. For the positive clauses, this follows
directly from the construction of the 1);, since there must exist an index j such
that M = (l; ;). Consider next the negative clauses I; VI3 V5. If this clause is
not satisfied, then V(I;) = V(l3) = V(I3) = 1, which together with the fact that

M falsifies the query, implies that M j= gb(E) for each 7. But this contradicts

the fact that DD was constructed so as to ensure that in each model at least one
of the (E) is satisfied. O

We note that it is possible to make the database of this proof have bounded
width. The “disjunction-generating” parts of the D; are the only components
in this proof containing order constants, and the proof still goes through if these
are placed in a linear order as depicted in Figure 4, yielding a database of width
two. Furthermore, the proof does not depend on the fact that the constants
a;, b;, c; and the constants /;, [; are object constants: it still goes through if we
take these to be order constants instead. Indeed, we may also place all of these
constants in a linear sequence following one of the sequences of Figure 4: this
way the width of the database is still two.

It is possible to establish the same lower bound also with respect to {<}-
databases and {<}-queries. The proof is almost identical, except that we use
for the basic “disjunction generating” components the databases D(u,v,w)
consisting of all atoms P(z,y,z) such that (z,y,z) is a permutation of the
sequence of order constants (u, v, w). In this case we use the query

p(z) = Jyz[P(z,y,z) Ne <y < 2]

where now z is an order variable. (This requires that we change the type of a
number of variables and constants in the proof of Theorem 3.2.) It is readily
verified that this query and database satisfy the properties D1 and D2 upon
which the proof of Theorem 3.2 relies. As before, the proof may be modified
to yield a database D(S) of bounded width: in this case a bound of three is
required.

The proof of the next result uses the following complete problem: A Il,
formula of quantified propositional logic is an expression

Vo1 . .pndqn . qm|@] (1)
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where a is a formula of propositional logic containing only the variables py ...pn,q1 - - - @m.
Such a formula is true if for every assignment of boolean truth value to the
variables p; there exists an assignment of truth values to the variables ¢; under

which the formula « is true. The set II5-SAT is the set of all true I, formu-

lae. This is a generalization of the problem of satisfiability to the polynomial
hierarchy. It is known that the set 113-S AT is complete for the level 115 of this
hierarchy [4].

Theorem 3.3: The combined complexity of {<}-databases and conjunc-
tive {<}-queries is I1} hard.
Proof: We use a reduction from 113-SAT. We reuse some ideas from the
previous proof to express binary disjunctions. Consider the database

D; = {B(ulv t)7 Iji(viv f)v U; <y, B(wh t)v }Dz(wlv f)}
As before, we may use the formula
QDZ(Q}') = Htltg[ﬂ(tl, ZU) A R(tg, $) A t1<t2]

to express the disjunction ¢;(t) V ¢;(f). We will use the databases D; and the
formulae @;(z) to simulate the assignment of truth values to the variables p;.
To simulate the calculation of the truth value of the formula o, we let £ be the
set of facts

And(t,t,1) Or(t,t,t)
&, f,f)  Or@t, fit)  Not(t, f)
And(f7t?f) Or(f7t?t) NOt(f7 t)
And(f, 1, ) Or(f, 1, ])

Now we define inductively the query Val(«,z, z) where « is a formula of propo-
sitional logic in the propositional variables p; ...ps and z is the vector of vari-
ables z;...zp. Intuitively this asserts that the truth value of the formula «
under the assignment z ...z, to the variables p;...py is z. If a is a propo-
sitional variable p; then Val(«a,z,z) is the formula z = z;. For the inductive

Istrue(t)

case we have

Val(~a,z,z) = 3t[Not(t,z) A Val(o, z,t)]
Val(a A B,z,2) = Ftite[And(ty,te,2) A Val(a,z,t) A Val(8,z,t3)]
Val(aV B,z,2) = It1t2[Or(ty, t2, 2) AVal(a,z,t1) AVal(B,z,t2)]

Note that at each level we need to use fresh existentially quantified variables.
A straightforward induction shows that if each z; is either the constant ¢ or
f, representing truth and falsity of the propositional constant p;, respectively,
then the database E entails Val(a,z,z) if and only if z is the truth value of
the formula « under the assignment z. (The use of equality in the definition
of the operator Val is purely for convenience. Strictly, we have not permitted
equality in our query language, but it is straightforward to eliminate. For ex-
ample, Val(—=p1, z1,2) is the formula Ft(Not(t,z) At = z1) which is equivalent
to Not(z1,z).)
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Now encode the quantified boolean formula (1) using the query

Q=32 ...z, 0p1(z1) A A @R (20)A
Jxzp41 . Zngm{Istrue(z) A Val(o, 21 .. 2ngm, 2)}]

and let the database D be the union of the databases IJ; and F. We claim that
D | ® exactly when the quantified boolean formula is true. For, suppose that
the formula is true, and let M be any model of D. By construction of the D; the
model M supports either @;(t) or ¢;(f). The truth of ® in M now follows from
the truth of the quantified boolean formula and the meaning of the formula
Val. Conversely, suppose ® is true in every model of D. By construction,
there exists for every vector z; ...z, of truth values a model M of D such that
M E ¢;(z) if and only if 2 = z;. Since M supports ® there exist truth values
Zp41 - - - Znem Such that the formula « is true under the assignment z; ...z, 4p,.
This shows that the quantified formula (1) is true. O

We note that by means of the reduction of Proposition 2.10, we obtain from
Theorem 3.3 a lower bound of 115 hard for containment of relational conjunctive
queries, resolving an open problem of Klug [17].

As before, it is also possible to prove the lower bound using only {<}-
databases and {<}-queries. We also note that it is possible to modify the
proof to use only a fixed finite set of binary predicates instead of the in-
finite set of predicates F,. One way to do this is to use a chain of facts
P(u,v,up), R(uo, u1), R(u1,uz), ..., R(uj—1,u;),Q(u;) of length 7 instead of the

atom P;(u,v) in the database, and use
Elto .. tZ[P(Z‘, Y, to) A R(to, tl) VANPIWAN R(ti_l,ti) A Q(tz)]

in the query in place of each occurrence P;(z,y). We may then make all predi-
cates binary by means of the well-known reduction of n-ary predicates to binary.

Theorem 3.4: 'There exists an indefinite order database with NP hard
expression complexity for conjunctive queries.

This follows from the fact that already relational databases have NP hard
expression complexity for conjunctive queries. A proof of this is implicit in the
proof of Theorem 3.3: if a is a propositional formula containing propositional
variables zq,...,z, then the query

a3z ...z [Istrue(z) AVal(a, z1 .. .2y, )]

is entailed by the set F just in case the formula « is satisfiable.

4  Conjunctive Monadic Queries

We now embark on our study of restricted forms of the query problems with
complexity lower than the general case, which we have just seen to be probably
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intractable. The lower bounds of Section 3 all required the use of at least binary
predicates. As we argued in Section 1, there are applications for which monadic
predicates suffice, so we are led to investigate the case in which all predicates
are monadic. In this section we focus on conjunctive queries. The following
sections will deal with the disjunctive case. Some of the ideas we develop in
this section are crucial to later results.

We have seen that the combined complexity of order databases is I15-
complete when we have binary predicates. It will emerge in this section that
the restriction to monadic predicates does not suffice to reduce this to a poly-
nomial time bound. Therefore, we investigate what further natural restrictions
are required to achieve this reduction in complexity. A bound on the width
of the database will be shown to be one restriction that suffices. Another, or-
thogonal case involves a restriction on the query: a certain class of conjunctive
queries, sequential queries, will be shown to have polynomial time complexity.

When all predicates are monadic, we may confine our attention to predicates
in which the single argument is an order argument. This is because there can
now be no interaction between order arguments and object arguments. Any
conjunctive query containing only monadic proper predicates can be written in
the form Ix[®;(x)]A3t[®@,(t)] in which the first component contains all and only
those parts of the query concerning objects. More precisely, the variables x are
all object variables, the variables t are all order variables, the query ®; contains
only proper atoms whose single argument is of type object, and the query ®,
contains no proper predicates with object arguments. That is, @5 contains only
order atoms and proper atoms with order arguments. Since the component
Ix[®, (x)] involves no order variables it does not interact with indefiniteness in
the database and may be directly evaluated, in time O(nlog n), where n is the
number of predicates, against the definite proper facts in the database. Thus
the main source of complexity in the query is the component Jt[®,(t)], which
contains no predicates with object arguments. (Object predicates may also be
eliminated from disjunctive queries by applying the above argument to each
disjunct.)

Once we discard object constants, a very useful way to understand nor-
malized monadic databases is as vertex labelled versions of the dags defined
in Section 2, in which we label vertices by one or more predicate symbols. If
u is an order constant we write D[u] for the set of predicates P such that D
contains the atom P(u). All of these predicates label the corresponding vertex
in the dag. Normalized conjunctive queries ® may similarly be interpreted as
labelled dags. In this case the vertices are the order variables of ®, and we
write ®[t] for the set of predicates P such that ® contains the atom P(t). For
example, if ® is the query

Ft1tatsta[P(t1) AQ(t1) A P(tg) A R(ts) A S(ta) ANty <ta<ts Aty <t

then we have ®[t;] = {P,Q} and ®[t4] = {S}. The dag of this query is de-
picted in Figure 5. Here solid lines represent edges labelled ‘<’ and broken lines
indicate edges labelled ‘<’. Clearly there is a one to one correspondence be-
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ey,

Figure 5: The dag associated with a query

tween monadic databases or queries and their labelled dag representations: we
will therefore sometimes describe monadic queries and databases by presenting
diagrams of their dags.
A query @ will be said to be sequential if it is a conjunctive query of the
form
Jty .t [tyrity Atarats A oo Abp_ 1o itn AW (Ey, . t)]

where V is quantifier free and contains no order relations, and each r; is either
‘<’ or ‘<’. Note that sequential queries have graphs of width one.

Sequential queries, finite models, and monadic databases of width one may
be perspicuously represented as words over a special alphabet. Given a set
Pred of monadic predicates, let A = P(Pred) be the power set of Pred. We
define the set FW (Pred) = A-({<, <} A)* of flexi-words over Pred to be the

set of all finite sequences of the form
ajriagry ... rp_10y

where for all i, a; € A and r; € {<,<}. Then the sequential query ® may
be represented by the flexi-word ®[ti]ri®[t2]re...rn_1®P[t,]. Conversely, to
each element of I'W (Pred), there corresponds a sequential query, unique up to
renaming of variables, as well as a database of width one, unique up to renaming
of constants. We will switch at our convenience between these representations.
For example, if p and ¢ are flexi-words, we may write p |= ¢: here p is to be
interpreted as a database and ¢ is to be interpreted as a sequential query. (Here
we exploit the fact that queries contain no constants.) The representation of
finite models as flexi-words is similar. That is, a finite model M with order
domain consisting of the points u;<uy< ...<u, corresponds to the flexi-word
Muy] < M[ug] < ... < M[uy,].

If @ is a conjunctive monadic query then a path in ® is a maximal sequential
subquery of ®. In terms of the labelled dag representation, a path of a query
corresponds to a labelled subgraph of its dag which has width one, and is
maximal with this property. Thus the paths of the query of Figure 5 are the
queries

Atytata[P(t1) AQ(t1) A P(t2) A S(ta) Nty <ty < t4]

and
Atytats[P(t1) A Q(t1) A P(t2) A R(ts) Aty <ty<ts]
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corresponding to the flexi-words {P,Q} < {P} < {S} and {P,Q} < {P} <
{R}. We write Paths(®) for the subset of FW (Pred) corresponding to paths
of ®. Similarly, if D is a database then we may define Paths(D) to be the set
of flexi-words corresponding to the maximal linear databases contained in D.

Lemma 4.1: If D is a monadic database and @ is a conjunctive monadic
query then D = @ if and only if D |= p for every path p € Paths(®).

Proof: It is clear that if D = & then D entails every path of ®. For
the converse, suppose that D = p for every path p € Paths(®). We show by
induction on the size of the query ® that D = ®. The base case, where ® is the
empty query, is trivial. Suppose that M is an arbitrary minimal model of D. Let
z be the least point in M with the property that ®[t] C M[z] for some minimal
vertex ¢ of ®. Write the model as the flexi-word M = My < M[z] < My, where
M, and My are flexi-words and the symbol M[z] in this expression corresponds
to the point z.

Define T" to be the set of all variables v such that (i) v is minor in the graph
of ® and (ii) for every path ug,u1,...,u, = v in the graph of ® which passes
only through edges labelled ‘<’; we have ®[u;] C M[z] for all ¢ = 0...n. Let
&\ T be the query whose graph corresponds to the graph obtained by deleting
the vertices I’ from the graph of .

We claim that My |= p for all p € Paths(®\T). For, suppose p € Paths(®\
T) and let t be the minimal vertex in the graph of p. Clearly £ ¢ T'. There are
two cases.

I. Part (i) of the definition of 7’ fails, i.e., ¢ is not minor. In this case there
exists a path of the form ¢ = ayriagry...r,_1a,r,p in &, where for some

1 =1...n we have r; = * </. We have assumed M satisfies all paths of
¢, Hence M = q. But z is the least point at which a; C M[z]. It follows
that My = p.

1. Part (ii) of the definition of 7' fails. Then there exists a path ¢ = a; <
az < ...<a, <pin @, where either ®[t] € M[z] or for some i =1...n
a; € Mlz]. Again M [ ¢, and it follows from the fact that z is the least
point such that a; C M[z] that My E p.

This completes the proof that My = p for all p € Paths(® \ T). It follows by
the induction hypothesis that My = ®\T. Let # be a satisfying assignment for
®\ 7T in My, and extend this to an assignment for ® by defining é(v) = z for all
v € T and #(v) = ¢'(v) otherwise. We claim that # is a satisfying assignment
for ® in M. This will complete the proof.

First, note that for all v € T, we have ®[v] C M|[z], by definition of 7.
Hence all proper atoms of & are satisfied under the assignment, and it suffices
to consider the order atoms. If # < v is an atom in ®, then we cannot have
v € T. If both u and v are not in 1" then the atom is in ® \ 7', hence obviously
satisfied. If w € T then (u) = z, and since #(v) lies in M it is greater that z,
hence the atom u < v is satisfied. Finally, if # < v is an atom in ® and v € T

26



then we must have u € T also. Since #(u) = #(v) = =z, the atom is satisfied.
On the other hand, if v ¢ T then we argue exactly as before. O

Lemma 4.1 shows that the problem of answering arbitrary conjunctive
queries may be reduced to the problem of answering sequential queries. The
next result shows that to answer sequential queries it suffices to restrict atten-
tion to databases of width one.

Lemma 4.2: If p is a sequential query then D = p if and only if ¢ E p
for some path ¢ of the database D.

Proof: It is clear that if ¢ = p for some path ¢ of the database D then D
entails p. For the converse, we show by induction on |D|+ |p| that if ¢ |= p for
no path ¢ of D then D £ p. The base case, when D and p are both empty,
is trivial. Suppose that the claim holds for all pairs of database and query of
combined size less than |D| + |p|. Assume that ¢ = p for no path ¢ of D. We
consider three cases.

Case I: The flexi-word corresponding to p has the form ao and there exists
a minimal vertex u of the graph of D such that a ¢ D[u]. Here a is a subset of
Pred and o is a sequence of symbols, possibly null. Let D' = D\ {u}. There
is no path ¢ of D such that ¢ = p, so there can be no path ¢ of D’ such that
q = p. Hence, since |D'|+|p| < |D|+]p|, it follows by the induction hypothesis
that D’ £ ®. That is, there exists a flexi-word M representing a model of D’
such that M [~ p. Now the flexi-word D[u] < M represents a model of D. If
it were the case that D[u] < M |= p, then we would have M |= p, because
a ¢ D[u]. Thus D[u] < M £ p, from which it follows that D [~ p.

Case II: The flexi-word corresponding to p is of the form a < p' and for
all minimal vertices u of the graph of D we have a C D[u]. Here a is a subset
of Pred, and p’ is a flexi-word. In this case, let S be the set of minor vertices
of the graph of D, and put D' = D\ S. Suppose that there exists a path ¢’
in D’ such that ¢’ = p’. Let v be the vertex of the graph of D corresponding
to the minimal vertex of this path. Since v is not in S, hence not minor in
D, there exists a path in the graph of D which corresponds to a flexi-word
¢ = airiasry...a,rpq’, where at least one of the r; is ‘<’. Since a C ay, it
follows that ¢ = p, a contradiction. This shows that ¢’ = p’ for no path ¢
of D'. By the induction hypothesis, we obtain that there exists a flexi-word
M’ corresponding to a model of D' such that M’ [~ p'. Let o’ be the union
of the sets D[v] for v € S, and let M be the flexi-word «’ < M'. Clearly M
corresponds to a model of D. However, M = a < p’ if and only if M' |= p/,
which is false. Hence M }£ p, which proves that D [~ p.

Case II1: The flexi-word corresponding to p is of the form a < p’ and for
all minimal vertices u of the graph of D we have a C D[u]. In this case, there
exists no path ¢ of D such that ¢ = p’. For, if this were the case, then the
minimal vertex v of ¢ would be minimal in D, hence satisfy « C D[u]. But this
implies ¢ = a < p/, a contradiction. It follows by the induction hypothesis that
there exists a model M of D such that M [~ p/. A fortiori, M (= a < p’, which
shows that D £ p. O
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SEQ(D, p):

IF pis empty THEN return true;
IF D is empty THEN return false;
IF p = ao and there exists a minimal vertex u of
the graph of D with a € D[u]
THEN return SEQ(D \ {u}, p);
IF p =a < p’ THEN return SEQ(D \ {v|v is minor in D}, p');
IF p=a < p’ THEN return SEQ(D, p').

Figure 6: An algorithm for sequential queries

The proof above yields a recursive procedure, shown in Figure 6, which
given as input a database D and a sequential query p decides if D = p. (In
fact, we can also modify the algorithm so that it returns a model of D in which
p fails, if D }= p.) If Pred is the set of predicate symbols, then the procedure
can be implemented to run in time O(|D| - [p| - |Pred)).

To see this, let us first recall that simply performing a topological sort (in
the standard sense of the term) of a dag can be done in linear time. The main
difficulty here is to be able to efficiently calculate after each vertex deletion the
new set of minimal vertices. The standard trick for this (see for example [14]) is
to associate with each vertex v the number of vertices u such that there exists
a edge from u to v. Whenever we delete a vertex, we decrement the count of
all of its successors. Should this operation decrease the count associated with
a vertex to zero, this vertex is added to the list of current minimal elements.
This results in a linear time topological sort.

Another operation we need to be able to perform efficiently is the deletion of
the set of minor vertices. To do this, we simply start deleting minimal vertices
one at a time, but each time one of these vertices has a successor through an
edge labelled ‘<’, we mark this successor. We take care to delete unmarked
minimal vertices only; once all minimal vertices are marked, we are done. It
is straightforward to show that this procedure is correct and has no more than
linear total cost over the run of the algorithm.

The main contribution to complexity, then, is the determination of whether
plu] C D[v]for all minimal vertices v of DD, where u is a variable of p. Once these
sets have been sorted, at cost O((|D|+|p|)|Pred|log |Pred|) = O(|D|:|p|:| Pred|)
the containment can be tested in time 2k. In the worst case we need to perform
the containment test |D| - |p| times, with total cost O(|D|- |p| - |Pred|). (The
worst case occurs when all order relations in p are ‘<’, D contains no order
atoms, and p[u] C D[v] for all u and v.) This establishes the bound claimed
above. We note that if p does not contain the relation ‘<’ then the maximum
number of set comparisons we need to perform is |D| 4 |p|, so in this case the
total cost of the comparisons decreases to O((| D]+ |p|)|Pred|).
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Corollary 4.3: The combined complexity for arbitrary monadic databases
and sequential queries is in polynomial time.

By Lemma 4.1, a database entails a conjunctive query @ just in case it
entails each path of ®. If the query @ is fixed, so is its set of paths, and we
obtain the following upper bound on data complexity.

Corollary 4.4: The data complexity of conjunctive monadic queries with
respect to monadic databases is in linear time.

Note, however, that the number of paths of a query can grow exponentially
in the size of the query, so the constant of proportionality may be very large.
It also follows from this that an algorithm which tests entailment of each path
of a query will not run in polynomial time if the size of the query is permitted
to grow. This suggests that the combined complexity when queries are non-
sequential may be high. As we will show shortly, this is indeed the case.

In case p and ¢ are flexi-words in which all order relations are ‘<’, we may
obtain a particularly simple characterization of when ¢ = p. Let us call such
flexi-words simply words, and write them as sequences of symbols over the
alphabet A = P(Pred). That is, we write ajas . ..a, for the word a; < ag <

. < ap. Ifp=ua...a, and ¢ = by...b,, are words in A* then we will
say that p is a subword of ¢ if there exist indices 71 <iy< ... <1, such that for
each j = 1...n, the set a; is a subset of the set b;,. For example, the word
{P,Q}{P}{R} is a subword of the word {P,Q, RH{R}{P, R}{P,Q, R}. (If an
element of a word is a singleton set then we will omit the braces. Thus, the
first of the two flexi-words above will also be written as { P, @Q}PR.) We obtain
from the proof of Lemma 4.2 the following.

Proposition 4.5: If p and ¢ are words then ¢ = p if and only if p is a
subword of q.

By Lemma 4.1 a database entails a conjunctive query ® just in case it entails
every path of ®. Combining this with Lemma 4.2, we obtain the following
characterization of entailment of conjunctive queries: D entails ® just in case
for every path p of ® there exists a path ¢ of D such that ¢ = p. In case D
and & contain only the order relation ‘<’, this holds just when every path of ®
is a subword of some path of D. The proof of the following lower bound makes
use of this characterization.

Theorem 4.6: The combined complexity of {<}-databases and width
two conjunctive {<}-queries over a fixed set of two monadic predicates
is co-NP hard.

Proof: We use a reduction from the problem of determining if a formula
in disjunctive normal form is a tautology. Since this is the complement of
determining if a conjunctive normal form formula is satisfiable, this is a co-NP
hard problem. Suppose that o =/ §; is a disjunctive normal form formula over
the propositional constants P, ..., P, where the §; are conjunctions of literals.
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Figure 7: The query ®(a).
T T T

Figure 8: The graph of the conjunction P, A P3 A Py.

We fix the set {7, F'} of predicates. All paths in the database or the query will
be words of length m over the alphabet {7, F'}, and correspond to valuations
of the set of propositional constants. Define ®(a) to be the query whose dag
is depicted in Figure 7. Here there are two rows, each containing m vertices.
Thus the query ® () has width two. Clearly Paths(®) = {T', F}"" is the set of
all words of length m over {7, I'}.

The database D(«) corresponding to the formula o will be the union of a
number of disconnected components, one for each disjunct é;. Each component
will be isomorphic to the subgraph of the graph of ®(«) generated by set of
nodes chosen as follows. For each j = 1...m, if the disjunct contains neither
the literal P; nor the literal P; then we retain both vertices in the j-th column
of ®(a). If the disjunct contains the literal P; then we retain from the j-th
column of ®(a) only the vertex labelled T'. Finally, if the disjunct contains the
literal P; then we retain from the j-th column of ®(a) only the vertex labelled
F. (We assume that each disjunct is consistent.) For example, the graph of
the component corresponding to the conjunction P; A P3 A Py is illustrated in
Figure 8. We let D(«) be the disjoint union of the components corresponding
to the disjuncts §;. Note that all paths of D(«) have length m. It is readily seen
that a word is a path of D(a) just in case « is true under the corresponding
valuation of the propositional constants.

Since the paths of D(a) and ®(«) all have length m, a path of ®(«a) is a
subword of a path of D(«) just in case it is in fact a path of D(a). Thus D(«)
entails ®(«) if and only if every word in {7, F}"" is a path of D(«). Interpreted
in terms of valuations, this holds exactly when « is true under every valuation,
that is, when « is a tautology. O

We will see shortly, (Proposition 5.2), that this lower bound is the best
possible, and that even disjunctive monadic queries have combined complexity
in co-NP. We note that the lower bound may also be established using only
{<}-databases and {<}-queries. To do so, we introduce two new predicates, P
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and ). The proof then proceeds using databases and queries whose dags have
the same structure as those in the proof of Theorem 4.6, except that the edges
are labelled ‘<’ instead. The vertices are labelled as before, but in addition
we label the vertices in the odd numbered columns with P and those in even
numbered columns with @, so that we obtain paths of the form

p=AP, 1} <A{Q, Rz} < {P Rs}... < AU, Ry}

where the R; are either T or I, and U is P or () according as n is odd or even.
One may verify using the algorithm of Figure 6 that if

q={P, R} <{Q,Ry} <{P,R;}...<{U,R;}

is a flexi-word of the same form and length, then ¢ |= p if and only if ¢ = p. It
follows from this that the proof works as before.

Notice that the databases D(a) constructed in the proof of Theorem 4.6
may grow to have arbitrary width, since the formula a may have an arbitrary
number of disjuncts. In such applications as databases recording the reports
of a fixed number of observers, it is natural to assume a width bound. Hence,
it is of interest to determine whether constraining the database to have width
bounded by a constant results in a decrease in complexity. The following result
shows that it does.

Theorem 4.7: If D is a database of width & and & is a conjunctive
monadic query then D |= ® can be decided in time O(|D|**! - |®|).

Proof: We reduce the problem to a depth first search of a directed graph
which represents the possible calling sequences of the algorithm SF@ when
given as input the database D and a path of the query ®.

If S is a set of vertices of the graph of D we will write D 1 .5 for the database
corresponding to the subgraph of the graph of D consisting of the vertices S
and all vertices reachable from these. Clearly if S is an antichain then S is the
set of minimal vertices of D 1 5. If D is a database and S is a set of vertices
of its graph we write D\ S for the database whose graph is obtained from the
graph of D by deleting the vertices S.

Define 7 be the set of tuples of the form (S, u) where S is an antichain of
the graph of D and u is a vertex of the graph of ®. Say that the tuple (S, u) is
initial if S is the set of minimal vertices of the graph of D and w is a minimal
vertex of the graph of ®. We construct a directed graph with vertices 7. There
exists an edge from (57, u) to (S2,v) just in case one of the following holds.

(a) There exists s € Sy such that ®[u] € D[s], Sy is the set of minimal
vertices of the graph of (D 1 51)\ {s}, and v = v. (Remark: it suffices
to have at most one edge of this type from each tuple (S, u).)

(b) There does not exists s € Sy such that ®[u] € D[s], there exists in the
graph of ® an edge from « to v labelled ‘<’; and Sq is the set of minimal
vertices of the graph of (D 1 51) \ {w|w is minor in D 1 S;}.
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(c) There does not exists s € Sy such that ®[u] € D[s], there exists in the
graph of ® an edge from u to v labelled ‘<’, and S; = 9,.

It is not difficult to see that a tuple (S,v) will be reachable from some initial
vertex (1,u) just when there exists a path wuy,ug,...,u, in the graph of ®
corresponding to the flexi-word p = ayriasre...rn—1a, such that v = wuy,
v = u; for some j, and the algorithm SF(Q), given as input the database D and
the flexi-word p makes the call SEQ(D 1 S,a;rja;417j41...rp—10,) at some
stage of the computation.

In particular, if a tuple of the form ((,v) is reachable from some initial
vertex, then the call SEQ(D, p) eventually returns false, so the path p is not
a consequence of the database, and D £ ®. Conversely, if no tuple of the form
(@, v) is reachable from any initial vertex, then there does not exist a path p of
& such that SEQ(D, p) returns false, hence D = &.

To determine the complexity bound, note that we may decide reachability
of a vertex of the form (0, v) by means of a depth first search. The most
expensive nodes to process during this search are nodes (Sy,u) from which
there exist edges of type (b). Here we must first determine that ®[u] Z D[s] for
each s € Sy. Since S; may contain at most the fixed number £ elements, this
may be done in time O(|Pred|), once the vertex labels have been sorted. Next,
we must determine the set Sy of vertices which are minimal after the minor
vertices of DD 1 57 have been deleted. Using the ideas for the implementation
of SE(Q), this may be done in time linear in the number of vertices and edges
deleted, certainly in time |D|. Finally, there is the cost associated with setting
up and returning from the recursive call of the search procedure, for each edge
from u labelled ‘<’ in the graph of ®. Whereas S K@ could destructively update
the counters on the vertices of 1) used to calculate minimal vertices, the present
depth first search must restore the values upon backtracking. The cost of this is
at most O(|D|), for each edge from (Sy, u) to be traversed. Thus the total cost
of processing vertices (51, u) generating edges of type (b) is O(#succ(u) - | D)),
where #suce(u) is the number of successors of u in ®. Summing over all | D|*.|®|
vertices in 7, we find a total cost for the depth first search of O(|D|*+! . |®|).
O

Notice that when we consider the effect of applying the algorithm of Theo-
rem 4.7 on fixed conjunctive queries, we obtain the bound O(|D|*+!). Compar-
ing this with the linear time algorithm of Corollary 4.4 we see that the present
approach yields a less efficient compiled version of a fixed query. However, since
the former algorithm has a constant of proportionality of order 2/®I, it is not
immediately clear which algorithm will be more efficient in practice.

5 Disjunctive Monadic Queries

The previous section dealt with the complexity of conjunctive monadic queries.
In this section we consider expression complexity and combined complexity of
monadic queries in the disjunctive case. In doing so, we present an algorithm for
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disjunctive monadic queries that is able to efficiently generate all countermodels
in case the query is not entailed by the data. The next section will deal with
data complexity in the disjunctive case.

We begin by noting that the algorithm for conjunctive queries of Theo-
rem 4.7 yields a more efficient way to answer monadic queries in a given model
than the naive approach of considering all substitutions for the variables of the
query. If M is a finite model and Dj; is the database of width one with the
same word representation as M, then M is the unique minimal model of Djy.
Hence M = @ if and only if Dy | ®. This yields the following corollary of
Theorem 4.7.

Corollary 5.1: If M is a finite model and @ is a disjunctive monadic
query over the predicates Pred, then M |= ® is decidable in time O(| M|
|®|-|Pred|). In particular, monadic databases have linear time expression
complexity with respect to disjunctive monadic queries.

Proof: We analyze the algorithm of Theorem 4.7 in the case that D is a
width one database not containing the relation ‘<’. In this case the compu-
tation of minimal vertices can be done in constant time and does not require
book-keeping, so the cost of processing each node of 7 reduces to the O(|Pred|)
containment test together with the O(#succ(u)) cost for the edges traversed.
Summing as before, we obtain the bound O(|M] - |®| - |Pred|) for conjunc-
tive queries. This also applies to disjunctive queries, since a model satisfies a
disjunctive query just when it satisfies some disjunct. O

Since databases containing binary predicates have NP complete expression
complexity, we note a decrease in complexity for monadic predicates. As a
further corollary we obtain an upper bound on the combined complexity of
monadic disjunctive queries, which improves the upper bound found in the
binary case. To determine D = ® it suffices to verify @ in each of the minimal
models of D. By Corollary 5.1, this can be done in polynomial time. Thus, we
have

Proposition 5.2: The combined complexity of monadic databases and
disjunctive queries is in co-NP.

This result indicates an improvement upon the IT5 completeness of combined
complexity for queries containing binary predicates. Theorem 4.6 shows that
the upper bound is optimal.

In the case of monadic conjunctive queries, we discussed two distinct re-
strictions, query sequentiality and bounded width of the database, under which
combined complexity drops from co-NP complete to PTIME. We now seek a
more refined understanding of the influence of these parameters on the com-
plexity of disjunctive queries. The following result states an upper bound in
terms of the database width and structure of the query.

Theorem 5.3: If D is a database of width k£ and @ is the query ®; V...V
®,,, where each ®; is a conjunctive monadic query using predicates Pred,
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then D |= ® can be decided in time O(|D|?* - |Pred| - ;=1 ,|®;]). In
particular, the combined complexity of monadic queries with a bounded
number of disjuncts and databases of bounded width is in polynomial
time.

Proof: As in the proof of Theorem 4.7, we reduce the problem to a depth
first search of a directed graph. In this case, the vertices of this graph con-
sist of a number of components. One of these components corresponds to a
class of partial topological sorts of the database. Kach remaining component
corresponds to a partially evaluated set of paths of one of the disjuncts of the
query.

Define 7 be the set of tuples of the form (S, 7, uy, ..., upn, 21, ..., 2,), where

1. S and T are antichains of the graph of D,
2. for each 7, u; is a vertex of the graph of ®;, and
3. each z; is either 0 or 1.

We will write a(S,T’) for the union of the sets D[u] where u is a vertex of the
graph D(S,T) = (D 1 S)\ (D 1 T), which consists of the vertices of D which
lie after S, but strictly before 7. Intuitively, a tuple represents a situation in
which the database D has been partially topologically sorted, with D 1+ (SUT)
being the unsorted portion, and D(S,T) provisionally the set of minor vertices
to be mapped to the next point of the model being constructed. (Other minor
vertices may be added later.) Each u; represents that some path of the query
d; is satisfied up to, but not yet including, the vertex u;. The meaning of the
x; is explained below.

Say that the tuple (S, 7, w1, ..., Un, 21,...,2,) is initial if S = (@, T is the
set of minimal vertices of the graph of D and for each ¢, z; = 0 and wu; is
a minimal vertex of the graph of ®,. A tuple is final if T is the empty set.
We construct a directed graph with vertices 7. There exists an edge from
(S, T ury ey, Ty ey @) to (S, T ul, oy ul, &), .0, 2)) just in case one of
the following holds.

(a) There exists v € T such that v is minor in D 1 (SUT'), and we have that
S’ is the set of minimal vertices of D 1 (SU{v}), 7" is the set of minimal
vertices of (D 1 T)\ {v}, and for each ¢, 2! = z; and ) = u;. (This type
of edge corresponds to adding the vertex v to the set of vertices to be
mapped to the next point of the linear order.)

(b) We have that (i) j € {1...n} is the least number such that z; = 0 and
®;[u;] € a(S,T) and (i) there exists an edge from u; to ) in ®;. In this
case 8" =S, T" =T, and for each ¢ # j we have v} = u; and 2z} = z;.
If the edge from u; to u/ is labelled ‘<’ then 2 = 1, else 2 = 0. (This
type of edge corresponds to noting that any path of ®; which has already
been satisfied up to (but not including) the vertex u;, can be satisfied
up to the vertex u} by interpreting this vertex in the point of the linear
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order being constructed. If the edge from u; to u; is labelled ‘<’ then
ug cannot also be satisfied by means of this point. The variable z; keeps
track of when this is the case.)

(c) For each i, either ®;[u;] € a(S,T) or ; = 1, and we have ' =0, 7' =T
and for each 7, v, = w; and z! = 0. (This type of edge corresponds to
mapping the vertices D(S,T) to the next point of the linear order, and
proceeding to construction of the following point. Note that we do not
do so until there is no possibility of extending one of the successful paths
to include u;, given the current choice D(S,T") of minor vertices.)

Using the interpretations of this construction given above, it may be shown that
a final tuple (S,7,uy,...,upn, 2q,...,2,) is reachable from some initial tuple
just when there exists a minimal model M of D, such that for eachi=1...n
there exists a path vy, v, ..., v, = u; in the graph of ®;, corresponding to the
flexi-word p = ayriasry. .. Ty _920y_1Tm—_10m, such that M satisfies the flexi-
word airiagry .. . Thm_9@m,m_1, but not the flexi-word p. It follows from this that
a final tuple is reachable just when D [£ ®.

In order to implement the depth first search, we may use again some of the
ideas for the algorithm SFEQ of the previous section. Note that we may have
up to k edges of type (a) from any tuple, at most one edge of type (b), and at
most one edge of type (c). Besides the time taken to traverse these edges, the
only other cost associated with a tuple is the determination of ®;[u;] C a(S,T)
for 2 = 1...n. As in the algorithm of Theorem 4.7, when backtracking we
need to restore the values of the counters used to compute minimal vertices,
as well as the markers used to decide whether a vertex is minor. This may be
done in constant time, since we are deleting one vertex of D at a time, hence
affecting at most 2k successors. Hence each tuple may be processed in time
O(k + n - |Pred]). Since the antichains have size at most k, the number of
tuples is O(|D|** - 11,1, |®;|), and the total cost for the depth first search is
O(|D|?* - |Pred| - ;= _,|®;]). O

We note that for conjunctive queries, the PTIME algorithm of Theorem 4.7
is more efficient than the present algorithm, since the dependence on database
size is O(| D|**1) instead of O(|D|**). We do not know if this discrepancy can
be remedied. However, we point out that the present algorithm computes more
information than the former, so it is likely to remain of interest even if the
bound can be improved. Suppose we have a database I which does not entail
the query ®, and we are interested in the models of D in which & fails. (For
example, the database may represent a set of scheduling constraints, and the
negation of the query the integrity constraints to be satisfied.) The algorithm
may be modified to enumerate all such models in an efficient manner.

Each path in the graph of 7 from an initial tuple to a final tuple corresponds
to topological sort of the database producing a model in which the query is false.
Conversely, each such model corresponds to some path (possibly many) of the
graph of 7. The algorithm may be readily modified to prune vertices of T
from which no final vertex is accessible. This results in a graph whose maximal
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paths correspond to models in which the query fails. By traversing this graph,
we enumerate (with some redundancy) all the models of interest, with no more
than polynomial time delay between successive outputs.?

The bound of Theorem 5.3 indicates an exponential dependence on the
width of the database and upon the number of disjuncts. We already know
from Theorem 4.6 that (for queries of width two or more) the exponential
dependence on the width of the database is unlikely to be eliminable. The
following results show that this is also the case for the exponential dependence
on the number of disjuncts.

Proposition 5.4: The combined complexity of bounded {<}-databases
over four monadic predicates and {< }-queries with an unbounded number
of sequential disjuncts is co-NP hard.

Note that this result indicates that the exponential dependence on the num-
ber of disjuncts will hold even if we make the disjuncts sequential, a constraint
we showed to lead to PTIME combined complexity for conjunctive queries
(Corollary 4.3). Moreover, it can be shown that sequentiality also does not
help to relax the width constraint of the PTIME class of Theorem 5.3 when we
bound the number of disjuncts:

Proposition 5.5: The combined complexity of bounded disjunctions of
sequential {<}-queries and unbounded width {<}-databases predicates
is co-NP hard.

This indicates that the PTIME class of Theorem 5.3 is the unique maxi-
mal class with respect to the parameters we have considered in this paper for
combined complexity of monadic queries. For the proofs of Proposition 5.4 and
Proposition 5.5 we refer the reader to [23].

6 Data Complexity of Disjunctive Monadic
Queries

We have seen that the data complexity of conjunctive monadic queries is in
polynomial time. The data complexity of disjunctive monadic queries also
turns out to be in polynomial time, but we will need some more sophisticated
techniques to show this. We will be able to prove that each query has data
complexity in PTIME, but without being able to provide an explicit algorithm
that works with this complexity. The proof relies on the following concept.

Definition 6.1: A quasi-order on a set X is a reflexive transitive relation
<. An element z of a quasi-ordered set X is minimal if for all y € X,

3Tt seems this approach will work for a more expressive class of queries. Tt would be interesting
to explore the relationships between this result and the dynamic programming techniques used to
find optimal alignments of sequences [20].
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y < x implies z < y. The pair (X, <) is said to be a well-quasi-order if
every nonempty subset S of X has a finite basis, i.e. a finite set B C §
such that S = {y € S|z < y}.

Equivalent definitions are as follows. First, a set is well-quasi-ordered just in
case (a) every strictly decreasing sequence is finite and (b) every set of pairwise
incomparable elements is finite. Alternately, call an infinite sequence zg, z1, . ..
bad if there do not exist indices 7 < j such that z; < z;. Then X is well-quasi-
ordered if and only if there does not exist a bad infinite sequence. The theory
of well-quasi-orders is well developed: see Kruskal [19] for an historical survey
and Milner [25] for a more detailed introduction. If X is a quasi-ordered set
then we may define a quasi-order on the set FP(X) of finite subsets of X by
S1 = Sy when for each x € S; there exists y € Sy with 2 < y. Similarly, the set
X* of all finite sequences on X may be quasi-ordered by x1...x, < y1...ym if
there exists a sequence of indices i;<i;<...<i, with z; Z y;, for j = 1...n.
It is known that if X is well-quasi-ordered then so are FP(X) and X*. (If
X = P(A) is the powerset of a finite set A, ordered by containment, the order
on X* is just the subword relation of Section 4. Thus, the fact that X* is
well-quasi-ordered means that the subword relation is a well-quasi-order.) We
will also use the following lemma, whose proof is straightforward.

Lemma 6.2: Let X be a well-quasi-ordered set. Suppose Y is any set
and let f be a function from Y to X. Then the relation C induced on Y
by  C y when f(z) < f(y) is a well-quasi-order.

We now set about constructing a well-quasi-order on the set of monadic
databases. We begin with an order on flexi-words. For flexi-words p, ¢ define
p <X q if ¢ E p. The following result generalizes the fact that the subword
relation is a well-quasi-order.

Lemma 6.3: The relation < well-quasi-orders the set of flexi-words over
a finite set Pred.

Proof: We adapt a standard argument (cf. [25] Theorem 1.6) used to show
well-quasi-orderedness of X*. We show that there is no bad sequence. Suppose
such a sequence pg, p1,pa, - - . exists, where each flexi-word p; is of the form
a;r;p:. Here a; is a subset of Pred, r; is either ‘<’ or ‘<’ and p! is a flexi-word.
We establish a contradiction. Without loss of generality, we may assume that
for each %, p; is a flexi-word of minimal length such that pg, p1, ..., p; may be
extended to an infinite bad sequence. Since Pred is finite, there must exist
an infinite sequence 1o, 1,... of indices such that for all j, a;; C a;,, and
the r;; are all the same order relation. Consider the sequence of flexi-words
POy P1y -+ s Pig—15 Plyy Phy - - - Since the original sequence was bad, there do not
exist indices 7 < j < iy such that p; < p;. On the other hand, if there were to
exist indices ¢ < iy and 7 > 0 such that p; < p;-J then we would have p;-J E pi,
hence p;; = aijrijp;-j = pi, ie., p; = p;;, contradicting the assumption that
the original sequence was bad. Thus, there must exists indices j < j’ such
that p;-] < p;-J,, ie., p;-J, = p;-J. Since a;; C a; and r;; = rig, it follows that
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Pij = pi,, e, pi; 2 Pi s again contradicting the assumption that the original
sequence was bad. It follows that the new sequence is bad. But since p; has
length shorter than p;,, and we assumed minimality of the original sequence,
this is a contradiction. O

We now construct a well-quasi-order on the set M of monadic databases.
Fix a finite set Pred of monadic predicates. (Since we are considering data
complexity, only the predicates which occur in the query are relevant.) By
Lemma 6.3 the set I'W (Pred) of flexi-words over Pred is well-quasi-ordered.
It follows that the set FP(F'W (Pred)) is also well-quasi-ordered. Since for each
database D we have Paths(D) € FP(FW (Pred)), by Lemma 6.2 we obtain a
well-quasi-order on M defined by Dy C Dy when Paths(D1) < Paths(Dy).

Lemma 6.4: For any disjunctive monadic query @, if Dy = ® and D; C
D2 then D2 }I d.

Proof: If D is a database then the set of flexi-words Paths(D) may also
be interpreted as a database which contains a distinct linear sequence for each
flexi-word in the set. Let w be the function which maps finite models to their
word representations by forgetting the interpretation of constants. Note that
p € w(Modpin(D)) if and only if p = Wp where ¥p is the conjunctive query
with the same graph as D. It follows by Lemma 4.1 that w(Modgin(D)) =
w(Modgin(Paths(D))) for any database D. Clearly if Paths(D;) < Paths(Ds)
then

w[Modpin(Paths(D3))] C w[Modpin(Paths(D1))]

so that w[Modgin(D2)] C w[Modgin(D1)]. Now notice that if D; = & then
M = @ for all M € Modgin(D1), which holds just in case p = ® for all
p € w[Modgin(D;)]. Clearly this implies that p = ® for all p € w[Modpin(D2)],
which implies that Dy = @ also. O

Lemma 6.4 shows that for any fixed disjunctive query ®, the set S(®) of
monadic databases D satisfying D |= ® is an ideal, that is, upwards closed.
Thus to show that Dy = ® it suffices to show that Dy C D; for some minimal
element Dy € S(®). By the well-quasi-order property, these minimal elements
exist and are finite in number. For any fixed D; we may determine Dy T Dy
in time linear in the size of Dy, as shown by Corollary 4.4. Thus we have

Theorem 6.5: The data complexity of monadic disjunctive queries on
databases is in linear time.

Notice that this argument does not provide us with an explicit algorithm,
since we do not as yet know how to calculate for each query ® a finite basis
of S(®), only that one exists. Thus, the proof is non-constructive.* Although
we have established a linear time upper bound, this result is of little practical
significance until an alternate constructive approach can be found, or further

4A number of other examples of non-constructive proofs that a set is in PTIME are known, see

[8, 9.
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analysis of the structure of the order C and the sets S(®) makes the present
proof constructive. We also warn that the fact that combined complexity is
co-NP hard indicates that the constants of proportionality may be very large.
One special case in which we do know how to compute a basis is when
the query @ is conjunctive. Lemma 4.1 and Lemma 4.2 together show that a
conjunctive monadic query ® is entailed by a database D just when Paths(®) <
Paths(D): this was the foundation of our earlier result that the data complexity
of conjunctive monadic queries is in PTIME (Corollary 4.4). Thus, if we take
Dg to be the database with the same labelled graph representation as the query
®, then we see that D |= @ if and only if Dg T D. This means that the set
S(®) has unique minimal element Dg, which is straightforwardly computable.
We see that not only does Theorem 6.5 subsume Corollary 4.4, but the proof

we gave for the latter is also a special case of the proof of the former.?

7 Queries and Databases Containing Inequal-
ity

We have focussed for the bulk of the paper on the relations ‘<’ and ‘<’.
However, it is natural to generalize indefinite order databases by permitting
databases and queries to contain atoms of the form u # v, where u and v are
both order constants or variables. We now briefly comment on this generaliza-
tion. Unfortunately, the consequences for our results are largely negative.

Let us first note that it is possible to eliminate occurrences of inequality by
replacing each atom u # v by the disjunction u < vV v < u. There are some
cases in which this idea suffices to transfer PTIME results of this paper to more
general situations. For example, this reduction shows that the data complexity
of monadic {<, <, #}-queries in {<, <}-databases is still in linear time.

In another case it is is possible to get a partial generalization by a different
method. Suppose we define the width of a {<, <, #}-database to be the width
of the {<, <}-database obtained by deleting all the inequality atoms. Then, by
appropriately modifying the procedure for topologically sorting a database, it is
possible to generalize the proof of Theorem 5.3 to yield a O(|D|**|®|') algorithm
for combined complexity of monadic {<, <}-queries ® with / disjuncts in {<
, <, #}-databases D of width k. Consequently, conjunctive monadic {<, <, #}-
queries have PTIME data complexity in {<, <, #}-databases of bounded width.

In general, however, the reduction eliminating inequality clearly leads to an
exponential blow-up in the size of databases and queries, so this approach is
of little use. Indeed, as the following result shows, the apparent increase in
complexity is real.

5We have also been able to obtain an algorithm for the basis computation under the assumption
that all databases contain the relation ‘<’ only. (Details to be reported elsewhere.) The general
case, however, remains open.
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Theorem 7.1: 1. There exists a {<}-database D of width one with NP
hard expression complexity for conjunctive monadic {#}-queries.

2. There exists a sequential query with co-NP hard data complexity
in monadic {#}-databases.

Proof: Both parts follow by reduction from graph three colourability.® Let
G be a graph with vertices V = {vy,...,v,} and edges K. For the first part,
take D to be the database {u; < uy < us, P(u1), P(u2), P(u3)} and let ® be
the query
Jui.op[P(v1) AL A P(on) A /\ (v; # v;)].
{viv;}ER

It is easy to show that D |= @ if and only if G is three colourable.
For the second part, let ® be the query

Ftytatsta[P(t1) A P(t2) A P(ts) A P(tg) Aty < tg < t3 < t4]

and take D = {v; # v;|{v;,v;} € E}YU{P(v;)|i=1...n}. Then D = @ if and

only if G is not three colourable. O

For conjunctive monadic queries we identified two cases with PTIME com-
bined complexity: sequential queries and databases of bounded width. Theo-
rem 7.1 suggests that (except for the special cases discussed above) neither case
may be generalized to databases and queries containing the relation ‘#£’. Fur-
thermore, the PTIME data complexity of monadic queries is also likely to fail
in databases containing ‘#’ as a consequence of this result. There appears to be
very little prospect of interesting tractable cases in the presence of inequality.

The proofs of Theorem 7.1 may be modified to use inequations only, suggest-
ing that monadic {#}-databases and conjunctive {#}-queries have I} complete
combined complexity, since the complexity of this problem is both NP hard and
co-NP hard. While I15 completeness in the case of databases containing binary
predicates follows from results of [1], we do not know if monadic databases are
subject to this bound.

Finally, we comment that the introduction of inequality requires a recon-
sideration of the influence of the order type on query evaluation. It is straight-
forward to check that the equivalence of the order types Fin, Q and Z with
respect to entailment of tight queries continues to hold for {<, <, #}-queries.
However, it is not clear that the reduction of the rational semantics to the finite
semantics (Lemma 2.5) may be generalized. The difficulty here is that while
it is possible to compute in polynomial time the set of order atoms entailed
by a {<, <,#}-database (see Ullman [30] Section 14.2, van Beek and Cohen
[3]), this set does not capture all the disjunctive consequences of the database.
Koubarakis [18] has shown that it is possible to project a set of {<, <, #}-
constraints onto a polynomial size representation which contains a number of
disjunctions of inequations. However, we do not know whether a polynomial
size disjunctive normal form representation is possible.

6Closely related results appear in [1, 32] for n-ary predicates and less restricted query forms.
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8 Conclusion

Our results in this paper conform to a pattern noted elsewhere: reasoning about
intervals is more complex than reasoning about points [13, 33]. We have seen
that binary predicates, which in combination with the order relations permit
the representation of certain forms of interval data, lead to increased complex-
ity. Elsewhere, we show that the picture on interval data is actually not so
bleak as it appears from the present paper [23, 22]. By replacing the bounded
width constraint by a slightly more restrictive condition, called bounded con-
currency, we obtain a tractable class of databases capable of expressing interval
data. In fact, with this constraint, it is even possible to combine the order
indefiniteness with certain forms of recursive indefiniteness, introduced in [24],
while retaining tractability. The techniques used in this work generalize the
ideas of Theorem 5.3.
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