
Containment of Conjunctive Queries
over Databases With Null Values?

Carles Farré1, Werner Nutt2, Ernest Teniente1, and Toni Urṕı1

1 Departament de Llenguatges i Sistemes Informatics
Unversitat Politècnica de Catalunya, c/ Jordi Girona, 1–3

08034-Barcelona, Spain
{farre,teniente,urpi}<at>lsi.upc.edu

2 Faculty of Computer Science, Free University of Bozen-Bolzano
Dominikanerplatz 3, I-39100 Bozen, Italy

nutt<at>inf.unibz.it

Abstract. We study containment of conjunctive queries that are evalu-
ated over databases that may contain tuples with null values. We assume
the semantics of SQL for single block queries with a SELECT DISTINCT

clause. This problem (“null containment” for short) is different from
containment over databases without null values and sometimes more dif-
ficult.
We show that null-containment for boolean conjunctive queries is NP-
complete while it is ΠP

2 -complete for queries with distinguished variables.
However, if no relation symbol is allowed to appear more than twice,
then null-containment is polynomial, as it is for databases without nulls.
If we add a unary test predicate IS NULL, as it is available in SQL, then
containment becomes ΠP

2 -hard for boolean queries, while it remains in
ΠP

2 for arbitrary queries.

1 Introduction

Containment of queries is a key topic in database theory. The main motivation,
which was already at the origin of containment studies, is query optimization. In
their seminal paper, Chandra and Merlin developed a containment-based tech-
nique to minimize the number of joins in a query while retaining equivalence [3].
Other problems for which containment is relevant include transaction manage-
ment [11], query rewriting [10], and verification of integrity constraints [6].

The study of query containment started off with conjunctive queries. Since
then, the work has been extended to a wealth of query types, such as con-
junctive queries with comparisons [8, 18], queries with union and difference [15],
datalog queries [16], conjunctive queries with negated atoms [11, 17], aggregate
queries [5], queries over semistructured data [1, 2], and XPath queries [12].

Containment has been studied under several semantics. In most cases, au-
thors assume that queries are evaluated under set semantics, that is, a query
? This work was supported by the British EPSRC (Grant GR/SS44830/01 MAGIK-I)

and the Spanish Ministerio de Educacion y Ciencia (Grant TIN 2005-05406).

returns each answer item only once. Chaudhuri and Vardi considered contain-
ment under bag semantics, which allows tuples to occur more than once in an
answer and is the semantics implemented in SQL database systems [4]. Another
line of research considers the effect of integrity constraints such as functional
dependencies or foreign key constraints on containment, which restrict the class
of databases to consider [13].

All this work did not take into account null values, which are the means by
which incomplete information is represented in SQL databases. In the presence
of null values, SQL queries are evaluated in a way that makes the existing theory
of containment inapplicable. The semantics of single block SELECT-FROM-WHERE
queries is as follows [7]:

– a query returns values for those combinations of tuples for which the WHERE
clause evaluates to true;

– an equality or a comparison involving null has the logical value unknown;
– a conjunction of conditions has the logical value true only if all conjuncts

evaluate to true.

Example 1. As an example, consider the two queries Q, Q′, which use a relation
with the schema residence(loc, person):

Q: SELECT DISTINCT r1.loc
FROM residence r1, residence r2
WHERE r1.loc = r2.loc

Q′: SELECT DISTINCT r.loc
FROM residence r

According to the SQL semantics, the second query returns the projection of
residence onto the attribute loc, which may include the value null. The first
query, however, returns only loc-values of residence that pass the test “r1.loc
= r2.loc”. In other words, Q returns the non-null values in the projection of
residence onto loc. As a consequence, Q and Q′ are equivalent over databases
that do not contain nulls. However, in the presence of nulls, Q is contained in Q′,
but not the other way round. ut

In the present paper we study null containment of conjunctive queries, that
is, containment under set semantics over databases that contain null values,
where conditions involving nulls are evaluated as in SQL. Such queries can be
equivalently expressed in SQL as single block queries with the keyword DISTINCT
in the SELECT clause. Note that this is also the semantics of nested subqueries
in EXISTS or IN clauses and of subqueries that are combined by the boolean
operators UNION, INTERSECTION, or MINUS.

In Section 2, we fix our notation. Section 3 presents a general criterion for
checking null-containment. In Section 4, we introduce J-homomorphisms, and
show that the existence of a J-homomorphism is sufficient for null-containment
while for boolean queries it is also necessary. We prove in Section 5 that null-
containment is ΠP

2 -complete in general, while we show in Section 6 that it is

polynomial for queries with at most two occurrences of each predicate. Finally, in
Section 7, we model SQL’s built-in predicate IS NULL and show that in the pres-
ence of such null tests, null-containment becomes ΠP

2 -hard for boolean queries
while it remains in ΠP

2 in the general case.

2 Preliminaries

A term (like s, t) is either a constant (like c, d) or a variable (like u, v,. . . , z).
A predicate symbol (like p, q, r) has an arity, which may be 0. An atom has
the form p(s1, . . . , sn), where p is a predicate symbol with arity n. Denoting
tuples of terms as s̄ (and tuples of constants and variables as c̄, d̄, and ū, v̄,
etc.) we sometimes write atoms as p(s̄). An atom is ground if it does not contain
variables. If a = p(s1, . . . , sn) is an atom and j ∈ [1, n], then a[j] denotes the
term occurring at position j in a, that is, a[j] = sj .

A condition B is a list of atoms, written as B = a1, . . . , an, where n ≥ 0.
We sometimes view a condition as a set of atoms. In particular, if B′ and B are
conditions, we write B′ ⊆ B to express that each atom of B′ occurs among the
atoms of B.

A conjunctive query is a rule of the form q(x̄) ← B, where x̄ is a tuple of
distinct variables. We often identify the query and the head predicate q, defined
by the query. A conjunctive query is boolean if the head predicate has the arity 0.
Distinguished and nondistinguished variables of q are defined as usual.

A database D is a finite set of ground atoms. The carrier of D is the set of
constants occurring in the atoms of D. An assignment over D, say δ, for the
query q(x̄)← B is a mapping from the set of variables of q to the carrier of D.
For a constant c we define δc := c. Assignments are extended in the obvious way
to complex syntactic objects such as tuples, atoms, conditions, etc. An atom a is
satisfied by δ over D if δa ∈ D and a condition B is satisfied by δ if δB ⊆ D. We
say that B is satisfied over D if it is satisfied by some δ over D. For a boolean
query q()← B, we say that q is satisfied over D if the body B is satisfied over D.

A tuple of constants d̄ is an answer over D to the query q(x̄) ← B if there
exists an assignment δ such that (1) δ satisfies B, and (2) δx̄ = d̄. The set of all
answers to q over D is denoted as qD. Let q, q′ be queries with the same arity.
Then q is contained in q′, written q ⊆ q′, if qD ⊆ q′D for all databases D.

A substitution is a mapping from a set of variables to a set of terms. Sub-
stitutions can be naturally extended to atoms and conditions. Let B, B′ be
conditions. A substitution γ for the variables of B′ is a condition homomor-
phism from B′ to B if γB′ ⊆ B. Suppose that q, q′ are defined as q(x̄) ← B,
q′(x̄) ← B′, respectively. Then γ is a query homomorphism from q′ to q if γ
is a condition homomorphism from B′ to B and γx̄ = x̄. The Homomorphism
Theorem for conjunctive queries says that q is contained in q′ if and only if there
exists a query homomorphism from q′ to q [3].

3 Null-Containment

We adapt the framework of Section 2 to capture query evaluation over databases
with nulls. We introduce a new constant ⊥ to model the value null in SQL. The
value ⊥ may occur in databases, but not in queries.

Let B be a condition and y be a variable occurring in B. We say that y
is a join variable of B if y has at least two occurrences in B and a singleton
variable otherwise. An assignment δ satisfies B over D if (1) δB ⊆ D and (2) δ
respects join variables, that is δy 6= ⊥ for every join variable y of B. Note that
this definition captures SQL’s semantics of equalities involving null. A variable
occurring at two positions in B corresponds in SQL notation to an equality
between two (not necessarily distinct) attributes, which is only satisfied if the
values of the attributes are identical and not null.

The set of answers to a query q over a database with nulls is defined as before
and is denoted in the same way as qD. We say that q is null-contained in q′ and
write q ⊆⊥ q′ if qD ⊆ q′D for all databases D, where D may contain the value ⊥.

Example 2. The two rule-based queries

q(x)← residence(x, y), residence(x,w)
q′(x)← residence(x, y)

are translations of the SQL queries Q, Q′ in Example 1. We see that the equality
in the WHERE clause of Q is reflected by the join variable x in q. ut

Clearly, null-containment implies containment. However, as seen in Exam-
ple 1, the converse is not true. This raises the question in which way we can
check null-containment and how difficult it is to decide this problem.

In the non-null case, a standard approach to checking whether q′ contains q is
to turn q into the canonical database Dq, obtained from q by “freezing” the vari-
ables into constants (see for instance [17]). For instance, the canonical database
for the query q in Example 2 is Dq = {residence(x, y), residence(x,w)} where
for the sake of simplicity we have identified the variables of q with their frozen
versions. We will do so also in the rest of the paper as long as no misunderstand-
ing can arise. Clearly, q returns the tuple consisting of the frozen distinguished
variables over Dq. The test criterion says that q is contained in q′ if also q′ re-
turns this tuple over Dq. Note that for boolean queries this tuple is the empty
tuple ().

Example 2 shows that this test cannot be used to decide null-containment
because x ∈ qDq′ , although q is not null-contained in q′. Fortunately, we can
modify the test so that it can be applied to the case of databases with nulls. A
null version of Dq is a database D obtained from Dq by replacing some frozen
variables of q with ⊥. By some slight abuse of notation we represent null versions
of Dq as instantiations θDq, where θ is a substitution that replaces some frozen
non-join variables of q with ⊥ and is the identity otherwise.

Theorem 1 (General Criterion). Let q(x̄), q′(x̄) be conjunctive queries. Then
q is null-contained in q′ if and only if for every null version θDq of Dq, we have
that q′ returns the tuple θx̄ over θDq.

Proof. The proof of the theorem is straightforward. Clearly, if q is null-contained
in q′, then q′ returns θx̄ over θDq because q returns θx̄ over θDq.

Conversely, suppose D is an arbitrary database with nulls and q returns an
answer d̄ over D. Let B, B′ be the bodies of q, q′, respectively. Then there is an
assignment δ from the variables of B to the carrier of D such that δ respects join
variables, δB ⊆ D, and δx̄ = d̄. We define a substitution θ such that θy = ⊥ if
δy = ⊥ and θ is the identity otherwise. Thus, also θ respects join variables.

Due to our hypothesis, there is an assignment η for the variables of B′ such
that η respects join variables, ηB′ ⊆ θDq, and ηx̄ = x̄. We can view η also as
a substitution if we identify variables and their frozen versions. Let δ′ := δη.
Then it follows that δ′ respects join variables because η does so and because
δ maps no variable in θB to ⊥. Moreover, δ′B′ = δηB′ ⊆ δB ⊆ D, and finally
δ′x̄ = δηx̄ = δx̄ = d̄. This shows that δ′ satisfies q′ over D and δ′x̄ = d̄. ut

Corollary 1 (Upper Complexity Bound). Null-containment of conjunctive
queries is in ΠP

2 .

Proof. According to Theorem 1, we can check that q is not null-contained in q′

by exhibiting a null-version θDq of Dq where q′ does not retrieve θx̄. Deciding
whether q′ retrieves a specific tuple over a database with nulls is in NP. Thus,
the complement of null-containment is in ΣP

2 . ut

Example 3. As a continuation of Example 2, consider the null-version D′0 :=
{residence(⊥,⊥)} of Dq′ . According to our definition of query answers, we
have that qD

′
0 = ∅, hence q′ is not null-contained in q.

4 Homomorphisms that Respect Join Variables

The general criterion of Theorem 1 is prohibitively complex. Therefore, we look
for a simpler test, which may not completely characterize null-containment, but
may serve as a sufficient criterion.

We say that a homomorphism γ from condition B′ to B respects join variables
if γ maps no join variable of B′ to a singleton variable of B, that is, γ maps join
variables to join variables or constants. A query homomorphism from q′ to q is
a J-homomorphism if it respects the join variables of the body of q′.

Proposition 1 (Sufficiency). Let q, q′ be conjunctive queries. If there exists
a J-homomorphism from q′ to q, then q is null-contained in q′.

The proof resembles the one that existence of a homomorphism is a sufficient
condition for containment.

Proposition 2 (NP-Completeness). Existence of J-homomorphisms is NP-
complete. This holds already for boolean conjunctive queries.

The proof reduces containment to the existence of a J-homomorphism.
For the discussion of boolean queries we introduce some extra notation. For a

query q, the substitution that maps every singleton variable of q to ⊥ is denoted
as θ⊥. The corresponding null version θ⊥Dq is denoted as D⊥q .

Theorem 2 (Characterization for Boolean Queries). Let q, q′ be boolean
conjunctive queries. Then q is null-contained in q′ if and only if there exists a
J-homomorphism from q′ to q.

Proof. We know by Proposition 1 that existence of a J-homomorphism is a
sufficient condition. It remains to show the necessity.

Suppose that q, q′ have the form q() ← B, q′() ← B′, respectively and that
q ⊆⊥ q′. By Theorem 1, there exists an assignment η for the variables of q′ that
satisfies q′ over D⊥q . We will use η to construct a J-homomorphism γ from q′ to
q.

We identify the substitution θ⊥ with the mapping that maps every atom
a ∈ B to the atom θ⊥a ∈ D⊥q . Similarly, we identify η with the mapping that
maps every atom a′ ∈ B′ to ηa′ ∈ D⊥q . The homomorphism γ will be defined in
such a way that η = θ⊥γ.

We first define γ as a mapping from the atoms of B′ to the atoms of B and
then show that γ is induced by a substitution. We choose γ as an arbitrary
mapping that maps an atom a′ ∈ B′ to an atom a ∈ B such that ηa′ = θ⊥a. In
other words, γ has the property that γa′ ∈ θ⊥−1(η(a′)) for every atom a′ ∈ B′.

It follows from the definition that the relation symbols of a′ and γ(a′) are
identical. Moreover, if a′[i] = c for some constant c, then η(a′)[i] = c and also
a[i] = c for every a ∈ θ⊥−1(η(a′)), hence γ(a′)[i] = c.

Now, consider two distinct atoms a′, b′ ∈ B′ such that a′[i] = b′[j] = y for
some variable y. It follows that η(a′)[i] = η(b′)[j] = ηy. Since y is a join variable,
we have ηy = s for some term s 6= ⊥. Let a := γa′ and b := γb′. If s is a constant
c, then a[i] = b[j] = c by the definition of θ⊥. If s = z for a (frozen) variable z,
then z is a join variable of B and the definition of θ⊥ implies that a[i] = b[j] = z.

Thus, a′[i] = b′[j] implies that γ(a′)[i] = γ(b′)[j] for all atoms a′, b′ ∈ B′ and
all positions i, j. Hence, γ is induced by a homomorphism, which we call γ, too.
Also, since θ⊥γ = η and η respects join variables, it follows that γ respects join
variables. ut

Combining Proposition 2 and Theorem 2, we can precisely characterize the
complexity of null-containment for boolean queries.

Corollary 2 (Complexity for Boolean Queries). For boolean conjunctive
queries null-containment is NP-complete.

A closer inspection of the proof of Theorem 2 reveals that for boolean queries
the general containment test of Theorem 1 can be simplified to one that uses
only a single test database.

Proposition 3. Let q(), q′() be boolean conjunctive queries. Then q is null-
contained in q′ if and only if q′ is satisfied by D⊥q .

5 Complexity of Null-Containment

The next example shows that the existence of a J-homomorphism is not a nec-
essary condition for null-containment of general conjunctive queries.

Example 4. We consider the following two queries:

q(x)← p(x, y1, z1), p(x2, y2, z2), p(x3, y3, x3),
r(y1, z1), r(y1, z2), r(y2, x3)

q′(x)← p(x, v1, w1), p(u, v2, w2), p(u, v3, w3),
r(v1, w2).

To simplify our discussion we denote the atoms of q as a1, a2, a3, b1, b2, b3
and the atoms of q′ as a′1, a

′
2, a

′
3, b

′, respectively. Thus, the two queries can be
written as

q(x)← a1, a2, a3, b1, b2, b3

q′(x)← a′1, a
′
2, a

′
3, b

′.

One easily checks that there exist exactly two query homomorphisms from q′

to q. To see this, note that there is no choice in mapping a′1, since x has to be
mapped to x. Then, there are two choices to map b′, namely either to b1 or to
b2. Depending on this choice, there is only one possibility to map a′2 and a′3. In
conclusion, the two mappings map the atoms of q′ to the atoms of q as follows:

γ1 = {a′1 7→ a1, a
′
2 7→ a1, a

′
3 7→ a1, b

′ 7→ b1}
γ2 = {a′1 7→ a1, a

′
2 7→ a2, a

′
3 7→ a2, b

′ 7→ b2}.

None of the two mappings preserves the join variable u, since γ1u = x, and
γ2u = x2. There exists, however, a third substitution that is a homomorphism
from the body of q′ to the body of q, but which fails to be a query homomor-
phism, since it maps the distinguished variable x to x2. This is the mapping

γ3 = {a′1 7→ a2, a
′
2 7→ a3, a

′
3 7→ a3, b

′ 7→ b3}.

Note that q′ has three join variables, namely u, v1, and w2, and that all three
substitutions map v1 and w2 to join variables of q. Moreover, γ3 also maps u to
the join variable x3.

We will see in the following that q is null-contained in q′. Let D be a database
and d an answer retrieved by q over D. Then there is an assignment δ such that
δx = d and δ satisfies the body of q. We distinguish between three cases and
show that in each case also q′ retrieves d:

1. If δx 6= ⊥, then δγ1 satisfies the body of q′ and δγ1x = d.
2. If δx = ⊥ and δx2 6= ⊥, then δγ2 satisfies the body of q′ and δγ2x = d.
3. If δx = ⊥ and δx2 = ⊥, then δγ3 satisfies the body of q′ and δγ3x = δx2 =
⊥ = δx = d.

Note that in the third case the reason why q′ retrieves ⊥ is that δ binds the
non-distinguished variable x2 to ⊥ instead of binding x to ⊥. ut

The queries of Example 4 will be a crucial ingredient for a reduction that
proves ΠP

2 -hardness of null-containment for conjunctive queries.
We reduce the problem of deciding the validity of quantified boolean formulas

with a prefix of the form ∀∗∃∗ to the null-containment problem. We note that
the former problem is already ΠP

2 -complete if the matrix is a conjunction of
3-clauses. Let

Φ = ∀y1 . . .∀yl∃z1 . . .∃zmφ1 ∧ . . . ∧ φn (1)

be such a formula, where each φk is a 3-clause containing variables among the
yi and zj .

We denote the values “true” and “false” as t and f and we identify the truth
values with constants that are interpreted as “true” and “false”, respectively.

The validity of Φ can be rephrased as the satisfiability of a set of formulas
derived from Φ. Let α : {y1, . . . , yl} → {t, f} be a truth value assignment. If ψ
is a propositional formula, we denote with ψα the formula obtained from ψ by
replacing each variable yi with the constant αyi. Let us denote the matrix of Φ as
φ := φ1∧ . . .∧φn. Then Φ is valid if and only if for every α : {y1, . . . , yl} → {t, f}
the formula φα is satisfiable.

We construct two conjunctive queries q, q′ such that q is null-contained in q′

if and only if Φ is valid. The two queries have the form

q(x1, . . . , xl)← G1, . . . , Gl, C1, . . . , Cn (2)
q′(x1, . . . , xl)← G′1, . . . , G

′
l, C

′
1, . . . , C

′
n, (3)

with conditions Gk, G′k, Cj , C ′j . Intuitively, the pair of conditions Cj , C ′j encodes
which bindings of the variables in the clause φj actually satisfy φj while the pair
Gk, G′k together with the distinguished variable xi generates bindings of yi to t
and f.

We first define the Ck and C ′k. Let u1, u2, u3 be the variables occurring in φk.
We introduce a new ternary relation symbol clk and define

C ′k := clk(u1, u2, u3). (4)

Out of the eight possible truth value assignments for the three variables, there
are seven, say β1, . . . , β7, that satisfy the clause φk. We define

Ck := clk(β1u1, β1u2, β1u3), . . . , clk(β7u1, β7u2, β7u3). (5)

For instance, if
φk = ¬y2 ∨ y3 ∨ ¬z1,

then only the assignment {y2 7→ t, y3 7→ f, z1 7→ t} does not satisfy φk. Hence,

C ′k = clk(y2, y3, z1)

Ck = clk(f, f, f), clk(f, f, t), clk(f, t, f), clk(f, t, t),
clk(t, f, f), clk(t, t, f), clk(t, t, t).

Consider a substitution θ for the variables yi, zj , where i ∈ [1, l] and j ∈
[1,m], such that θ maps every variable either to t or to f. Obviously, such a
substitution can be viewed as a truth value assignment for the variables and
vice versa. Moreover, by construction we have for each k ∈ [1, n] that θC ′k ⊆ Ck

if and only if the corresponding assignment satisfies φk.
Next, consider a fixed index i ∈ [1, l]. We define the Gi and G′i by modifying

the bodies of the queries in Example 4. More specifically, the body of q will
give rise to Gi and the body of q′ to G′i. To this end, we introduce a ternary
relation pi and a binary relation ri and turn every atom for p and r into one
for pi and ri, respectively. We do so by renaming the output variable x as xi,
instantiating y1 and y2 by t and f, respectively. and renaming v1 as yi. All other
variables are renamed by adding the number i to their subscript. Thus, Gi and
G′i look as follows

Gi = pi(xi , t , zi1), pi(xi2, f , zi2), pi(xi3, yi3, xi3),

ri(t , zi1), ri(t , zi2), ri(f , xi3)

G′i = pi(xi , yi , wi1), pi(ui, vi2, wi2), pi(ui, vi3, wi3),

ri(yi, wi2),

where we have highlighted the terms that have been introduced as replacements
of x, y1, y2 and v1. It follows from the discussion of Example 4, that any homo-
morphism from G′i to Gi either maps yi to t or to f and that the homomorphisms
mapping yi to t are exactly the ones that map xi to xi.

Lemma 1. Let Φ be a quantified boolean formula as in Equation (1) and q, q′

be a pair of conjunctive queries encoding Φ as in Equations (2) and (3). Then

Φ is valid ⇐⇒ q ⊆⊥ q′.

Theorem 3 (Complexity of Null-Containment). Null-containment of con-
junctive queries is ΠP

2 -complete.

6 Binary Queries

A conjunctive query that for every predicate contains at most two atoms with
that predicate in its body is called binary. Sagiv and Saraiya have shown that
containment of binary queries is polynomial [14]. We prove that this extends to
null-containment.

We show first that for the class of binary queries the existence of a J-homo-
morphism is also a necessary condition for null-containment. This holds already
if only the containee is binary.

Theorem 4. Let q, q′ be conjunctive queries such that q ⊆⊥ q′. If q is binary,
then there exists a J-homomorphism from q′ to q.

Proof. If q, q′ are boolean queries, then the claim follows from Proposition 2.
Suppose, therefore, that the queries have the form q′(x̄)← B′, q(x̄)← B, where
the tuple x̄ is nonempty.

Since q ⊆⊥ q′, it follows that q ⊆ q′. Hence, there exists a homomorphism
from q′ to q. Let γ1, . . . , γn be all the homomorphisms from q′ to q. We want to
show that one of the γi preserves join variables.

The proof is by contradiction. We assume that each γi maps some join vari-
able of B′ to a singleton variable in B. We say a null version θDq of Dq is a
witness for this fact if for every i ∈ [1, n] there is a join variable y of B′ such
that θγiy = ⊥, that is, if every γi maps some join variable of B′ to a singleton
variable of B that is mapped to ⊥ by θ. There is at least one witness, namely
the null version θ⊥Dq defined by the substitution θ⊥ that maps every singleton
variable of B to ⊥.

We introduce a partial order on null versions of Dq by defining θ1Dq � θ2Dq

if θ1z = ⊥ implies θ2z = ⊥ for all variables z occurring in B. Let D0 := θ0Dq be
a witness that is minimal with respect to “�”. Note that, due to the minimality
of D0, for every variable z with θ0z = ⊥, there is a homomorphism γi such that
γiy = z for some join variable y of B′. If there were a z without this property,
then we could redefine θ0z := z while still retaining a witness, contrary to the
minimality of D0.

Clearly, q retrieves θ0x̄ over D0. Since q ⊆⊥ q′, there exists an assignment η
for the variables in B′ such that (1) η satisfies B′ over D0 and (2) ηx̄ = θ0x̄.
Moreover, since D0 is a witness, we also have that (3) η 6= θ0γi for all i ∈ [1, n].

The assignment η has the property that ηB′ ⊆ D0 and η maps some singleton
variables of B′ to ⊥. The database D0 has been obtained from Dq by applying
θ0, which maps some frozen singleton variables in Dq to ⊥. Thus, each ⊥ in D0

replaces a singleton variable in Dq. As a consequence, there is a substitution ρ
such that ρB′ ⊆ B and η can be factorized as η = θ0ρ.

Thus, ρ satisfies B′ over Dq. However, ρ cannot map x̄ to x̄ because then
it would be a query homomorphism. Note that, in general, ρ is not uniquely
determined. In summary, the following facts hold for ρ: (1) ρ satisfies B′ over
Dq, (2) θ0ρ satisfies B′ over D0, (3) θ0ρx̄ = θ0x̄, and (4) ρx̄ 6= x̄.

The above implies that ρx 6= x for some x in x̄. For this x we have that
θ0x = ⊥, since otherwise θ0ρx = θ0x could not hold. Thus, θ0x̄ has at least one
occurrence of ⊥. Moreover, ρx is a variable, say v, since otherwise θ0ρx = θ0x =
⊥ could not hold. In summary, there are two singleton variables x, v occurring
in B such that (1) x occurs in x̄, (2) ρx = v, and (3) θ0x = θ0v = ⊥.

From ηx = θ0ρx = ⊥ we conclude that x is also a singleton variable in B′.
Hence, there is a unique atom a′ in B′ containing x. Given that x is a distin-
guished variable, there is a unique atom a1 in B such that a1 = γia

′ for all
i ∈ [1, n], and given that v 6= x, there is a unique atom a2 in B such that
a2 = ρa′.

Suppose that a′ has the predicate p and that x occurs in a′ at position j,
that is, a′[j] = x. Then a1 and a2 have the predicate p, too. Moreover, a1[j] = x
and a2[j] = v, which implies that (θ0a1)[j] = (θ0a2)[j] = ⊥ in D0.

Since D0 is a minimal witness, B′ contains a join variable, say y, such that
γiy = x for some i ∈ [1, n]. The variable x being a singleton, we conclude that
in B′ there is an atom b′ such that b′[j] = y, and b′ has the predicate p, too.

Given that q is binary, there are only two atoms in D0 to which b′ can
be mapped by the assignment η, namely θ0a1 and θ0a2. However, both atoms
contain the value⊥ at position j, which contradicts the requirement that ηy 6= ⊥,
since y is a join variable. ut

Next, we introduce a simple transformation of queries that will allow us to
reduce the existence check for J-homomorphisms to the one for simple homomor-
phisms. For every relational query q(x̄) we define a query q̂(x̄), the J-transform
of q, as follows:

– for every predicate p occurring in the body of q we introduce a new predicate
p̂ of the same arity;

– for every atom a = p(c̄, ȳ, z̄) in the body of q, where c̄ are the constants in
a, ȳ are the join variables in a, and z̄ are the singleton variables in a, we
construct the atom â := p̂(c̄, ȳ, w̄), where w̄ are fresh variables;

– if q has the body B, then q̂ has the body B, B̂, where B̂ contains for every
a ∈ B the corresponding â.

Example 5. Consider the two queries

q(x)← r(x, z1)
q′(x)← r(x, z1), r(x, z2).

The corresponding J-transforms are

q̂(x)← r(x, z1), r̂(w,w1)
q̂′(x)← r(x, z2), r(x, z3), r̂(x,w2), r̂(x,w3).

Note that x is a singleton variable in q and therefore the variable w has been
introduced as a duplicate of x in q̂. ut

Lemma 2 (J-Transform). Let q, q′ be two relational conjunctive queries. There
is a J-homomorphism from q′ to q if and only if there is a query homomorphism
from q̂′ to q̂.

Theorem 5 (Polynomiality for Binary Queries). For binary queries, null-
containment can be decided in polynomial time.

Proof. By Lemma 2, null-containment of conjunctive queries can be reduced to
the containment of their J-transforms. Clearly, the J-transform of a binary query
is again binary. As shown in [14], containment can be checked in polynomial time
for binary queries. ut

7 Null Tests

Our SQL-like semantics of conjunctive queries allows us to enforce that a vari-
able y be bound only to non-null values. To see this, suppose that p(y, z̄) is an
atom in a condition B. Let B′ be obtained from B by adding an atom p(y, w̄),
where w̄ is a tuple of fresh variables. If D is a database, then an assignment δ
satisfies B′ over D if and only if δ satisfies B over D and δy 6= ⊥.

Also SQL allows one, by writing “att IS NULL”, to test whether the value
of an attribute att is null. We model this facility to test for null by introducing
a unary built-in predicate isNull, which can appear in conditions, but not in
databases. Atoms with a predicate other than isNull are relational. A condition
B is safe if for every atom isNull(y) in B we have that (1) y occurs also in a
relational atom of B and (2) y is a singleton variable of B. We only consider
queries with safe bodies. An assignment δ satisfies isNull(y) if δy = ⊥.

Null-containment of conjunctive queries with isNull can be decided using
null versions of canonical databases as in Theorem 1. The difference is that
(1) a canonical database Dq contains only the frozen relational atoms of q and
(2) null versions θDq can only be obtained from substitutions θ such that θy = ⊥
whenever isNull(y) occurs in the body of q.

A substitution γ is a homomorphism or J-homomorphism between queries
with null tests if γ is a homomorphism or J-homomorphism, respectively, when
isNull is treated like a relational predicate. We say that γ is a relational ho-
momorphism if γ is a homomorphism when we ignore all isNull atoms. It is
straightforward to check that the existence of a J-homomorphism continues to
be a sufficient condition for null-containment.

However, as the following example shows, the existence of a J-homomorphism
is no longer a necessary condition for null-containment of boolean queries with
null tests. The intuitive reason is that adding null tests allows us to express
alternatively that a variable must be bound to null or that it must be bound
to a non-null value. This is a form of negation, which forces us to make case
analyses when checking containment.

The reader will verify that examples and proofs in this section can be amended
in a straightforward way to yield results for other extensions of conjunctive
queries that allow one to express the negation of specific atoms. Two examples
for such extensions are negation of atoms and comparisons. While it is well-
known that containment is ΠP

2 -hard in the presence of comparisons [18], to the
best of our knowledge this has not yet been proven for negated atoms.

Example 6. Consider the queries

q()← p(c, v1), p(c, v2), p(v1, v2), p(v2, v3),
r(v1, z1), isNull(z1),
r(v2, z2),
r(v3, z3), r(z4, z3)

q′()← p(c, u1), p(u1, u2),
r(u1, w1), isNull(w1),
r(u2, w2), r(w3, w2).

Note that graphically, the first three p-atoms of q form a triangle, while the fourth
p-atom extends the triangle at the variable v2. Each variable vi is connected
to a variable zi by the predicate r. The p-atoms in q′ form a path of length 2.
Analogously to the situation in q, each variable uj is connected by the predicate r
to a variable wj . The conditions on w1, w2 in q′ require that u1 be connected
by r to a null value and u2 to a non-null value. The conditions on z1, z2, z3 in q
require that v1 be connected to a null value, v3 to a non-null value, and v2 to a
value that may be null, but need not.

Clearly, there is no J-homomorphism from q′ to q. Such a substitution would
have to contain the mappings [u1/v1, w1/z1, u2/v2]. This partial substitution
cannot be extended to a J-homomorphism because w2 is a join variable, which
cannot be mapped to the singleton variable z2.

Nonetheless, q ⊆⊥ q′, which can be seen by considering the two substitutions

γ1 = [u1/v1, w1/z1, u2/v2, w2/z2, w3/v2]
γ2 = [u1/v2, w1/z2, u2/v3, w2/z3, w3/v3].

Clearly, γ1 and γ2 are relational homomorphisms. Let D be a database and δ
be an assignment that satisfies q over D. Then one checks that δγ1 satisfies q′ if
δz2 6= ⊥ and δγ2 satisfies q′ if δz2 = ⊥. ut

The ΠP
2 -hardness proof in this section is based on a similar idea as the one

in Section 5. We translate a quantified boolean formula as in Equation 1 into
two boolean queries

q()← H1, . . . ,Hl, C1, . . . , Cn (6)
q′()← H ′

1, . . . ,H
′
l , C

′
1, . . . , C

′
n, (7)

where the Ck and C ′k are defined as in Equations (5) and (4), respectively.
The conditions Hi, H ′

i play the role of generators of assignments for the
variables yi and are defined as modifications of the bodies of the queries in
Example 6, obtained by parameterising predicates and variables with the index i,
and substituting variables v2, v3 in q by t and f, respectively, and by substituting
u2 with yi. Thus, Hi and H ′

i look as follows:

Hi = pi(c, vi1), pi(c, t), pi(vi1, t), pi(t , f),

ri(vi1, zi1), isNull(zi1), ri(t , zi2), ri(f , zi3), ri(zi4, zi3)

H ′
i = pi(c, ui1), pi(ui1, yi),

ri(ui1, wi1), isNull(wi1), ri(yi , wi2), ri(wi3, wi2).

Lemma 3. Let Φ be a quantified boolean formula as in Equation (1) and q, q′

be a pair of boolean queries encoding Φ as in Equations (6) and (7) Then

Φ is valid ⇐⇒ q ⊆⊥ q′.

Corollary 3. The null-containment problem for boolean conjunctive queries with
null tests is ΠP

2 -complete.

Corollary 4. The containment problem for boolean conjunctive queries with
negated atoms is ΠP

2 -hard.

Proof. We modify Example 6 by first dropping all r-atoms and all null tests.
Then we add in q and in q′ the atoms p′(u1) and ¬p′(u2). For the new queries,
one shows q ⊆ q′ by a similar argument as above.

Based on the modified example, we encode a quantified boolean formula as
in Equation (1) into a containment problem for conjunctive queries with negated
atoms. The reduction and the proof of the corresponding lemma are analogous
to the ones for queries with null tests. ut

8 Conclusion

Query containment has been studied extensively for a variety of query types and
semantics. However, the fact that real databases contain null values has been
widely ignored by this work. We feel that it is important to understand the effect
of null values on containment if one wants to apply containment based techniques
in realistic scenarios. Moreover, containment plays a key role in information
integration, where it is increasingly likely to encounter data sets with null values
after merging heterogeneous data sources.

In the present paper, we have concentrated on relational conjunctive queries
because it is in this basic setting that the most crucial differences to the clas-
sical non-null results become apparent. A characterization of null-containment
in terms of homomorphisms, analogous to the classical case, is only possible for
boolean queries, while for queries with distinguished variables null-containment
is strictly more complex than containment. A similar characterization, using ho-
momorphisms, exists for queries with at most two atoms per predicate, while an
example shows that it no longer holds for queries with three atoms per pred-
icate. Adding an SQL style IS NULL test creates a limited form of negation,
which resembles the one introduced by comparisons like y > 1 and y ≤ 1, or by
the negation of relational atoms. These additional constructs raise complexity
to ΠP

2 -completeness, which was already known for comparisons [18].
Containment of conjunctive queries over databases with null values can be

reduced to containment of conjunctive queries with disequations over regular
databases. The fact that a join variable x cannot be bound to ⊥ can be ex-
pressed by adding to the query body a disequation x 6= ⊥. Since it is known that
containment of conjunctive queries with disequations is ΠP

2 -complete, this yields
an alternative proof for Corollary 1 in the present paper. The ΠP

2 lower bound

for null-containment in Theorem 3 yields also the new result that containment
of conjunctive queries with disequations is already ΠP

2 -hard if all disequations
are of the form x 6= c with a single constant c, which complements the lower
bounds in [9, 18].

Acknowledgment

We would like to thank an anonymous referee for pointing out the relationship
of our work and the one on queries with disequalities.

References

1. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In Proc. 7th KR, pages 176–185,
2000.

2. D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decidable containment of recursive
queries. In Proc. 9th ICDT, pages 1–18, 2003.

3. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proc. 9th STOC, 1977.

4. S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proc.
12th PODS, 1993.

5. S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate queries. In Proc. 9th
ICDT, 2003.

6. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Verifying integrity constraints
on web-sites. In Proc. 16th IJCAI, pages 614–619, 1999.

7. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete
Book. Pearson Education International, 2002.

8. A. Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–160,
1988.

9. P. Kolaitis, D. Martin, and M. Thakur. On the complexity of the containment
problem for conjunctive queries with built-in predicates. In Proc. 17th PODS,
pages 197–204, 1998.

10. A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using
views. In Proc. 14th PODS, pages 95–104, 1995.

11. A. Levy and Y. Sagiv. Queries independent of updates. In Proc. 19th VLDB, pages
171–181, 1993.

12. G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In
Proc. 21st PODS, pages 65–76, 2002.

13. L. Popa and V. Tannen. An equational chase for path-conjunctive queries, con-
straints, and views. In Proc. 7th ICDT, pages 39–57, 1999.

14. Y. Sagiv and Y. Saraiya. Minimizing restricted-fanout queries. Discrete Applied
Mathematics, 40:245–264, 1992.

15. Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the
union and difference operators. J. ACM, 27(4):633–655, 1981.

16. O. Shmueli. Equivalence of datalog programs is undecidable. Theoretical Computer
Science, 15(3):231–242, 1993.

17. J. Ullman. Information integration using logical views. In Proc. 6th ICDT, pages
19–40, 1997.

18. R. van der Meyden. The complexity of querying indefinite data about linearly
ordered domains. J. Computer and System Sciences, 54(1):113–135, 1997.

