Information Integration

— Mock Exam —

Werner Nutt

10/06/11

The exam comprises five questions, which consist of several subquestions.

Each question is worth 15 points. The total mark for the test will be based
on the four questions for which you achieved the highest mark.

There is a total of 60 points that can be achieved in this exam. You will
have 2 hours time to answer the questions.

Please, write down the answers to your questions in the test booklet handed
out to you.

For drafts use the blank paper provided by the university.

If the space in the booklet turns out to be insufficient, please use the uni-
versity paper for additional answers and return them with the booklet.

Queries in Relational Algebra and Calculus

Suppose a boat club has a database with the schema

Boat(bname, type, colour)

Reservation(mname, bname, day)

which records information about the boats owned by the club and about which
member has reserved which boat on which day.
Consider the following two queries:

1. “Which members have only reserved red boats? ”

2. “Which members made reservations for every boat of type dinghy?”
Express each query

(i) in relational algebra

(ii) in relational calculus, that is, as an expression of the form

{z|o(z)}

where x is the variable for which we want bindings and ¢(z) is a logical
formula with free variable x.

Safety and Domain Independence of Queries
Consider the following four queries expressed in relational calculus:

1. {2,y | 3zhasChild(z, z) V JwhasChild(w,y) }
2. {z | rich(z) A Yy (hasChild(z,y) — —rich(y)) }
3. {x | rich(x) A Yy (—hasChild(z,y) — rich(y)) }
For each query, determine whether or not it is

o safe

e domain-independent.

For each query and each property, if your answer is “yes”, briefly and infor-
mally explain your answer. If your answer is “no”, provide an example showing
that the query does not have the property in question.

Containment

In this question, we only consider relational conjunctive queries, that is, queries
that do not contain comparisons.
Suppose qq is a fixed conjunctive query.

e The container problem for ¢ is the following decision problem:
Given a conjunctive query ¢, decide whether ¢y C g.
e The containee problem for ¢y is the following decision problem:

Given a conjunctive query ¢, decide whether ¢ C ¢q.

Prove or disprove the following statements:

1. For every conjunctive query ¢y, there is a polynomial time algorithm to
decide the container problem for q.

2. For every conjunctive query qg, there is a polynomial time algorithm to
decide the containee problem for qq.

To prove a statement, a sketch of an algorithm together with a short argument
why it is polynomial is sufficient. To disprove the statement, find a query qq for
which the problem in question is NP-hard. Again, a proof sketch is sufficient to
show the NP-hardness.

NP-Hardness of Conjunctive Query Containment

Recall that simple conjunctive queries have only relational atoms in their body,
and no equalities or inequalities.

A graph is called a clique if any two vertices of the graph are connected by
an edge. A graph G is said to have a clique of size k, k > 0, if G has a subgraph
S such that S is a clique and has k vertices. The following problem, known as
the Clique Problem, is NP-hard:

Given: A graph G and a number k£ > 0

Question: Does G have a clique of size k7
Show that containment of simple conjunctive queries is NP-hard by reducing

the Clique Problem to Query Containment. Describe the reduction and briefly
explain why it is correct.

Hint: This reduction is similar to other reductions of problems that ask whether
a graph contains a specific kind of pattern.

Translation of Queries

Suppose a library has a database with the schema

book(bookid, author, title, language)

borrows(reader, bookid, date),

which records information about books and about which reader has borrowed
which books at which date.

(i) Consider the following query, expressed in relational algebra in the named
perspective:

7Tr(—:ader(borrows) \ 7Treader(borrows X Ulanguage:’English’ (bOOk))

Express the query equivalently in

— Relational Calculus (i.e., first order predicate logic)

— SQL without using the boolean operators AND, OR, MINUS, or EXCEPT.
(ii) Consider the following query, expressed using rules:

ans(R) :~ borrows(R, Bl,D), book(B1, Dickens’, T'1, L1),
borrows(R, B2, D), book(B2,'Scott’, T2, L2)

() (
() (
ans(R) :— borrows(R, Bl,D), book(B1, A1,T1, 'English’),
borrows(R, B2, D), book(B2, A2, T2,'French’)

Express the query equivalently in

— Relational Algebra in the unnamed perspective

— SQL.

10

11

