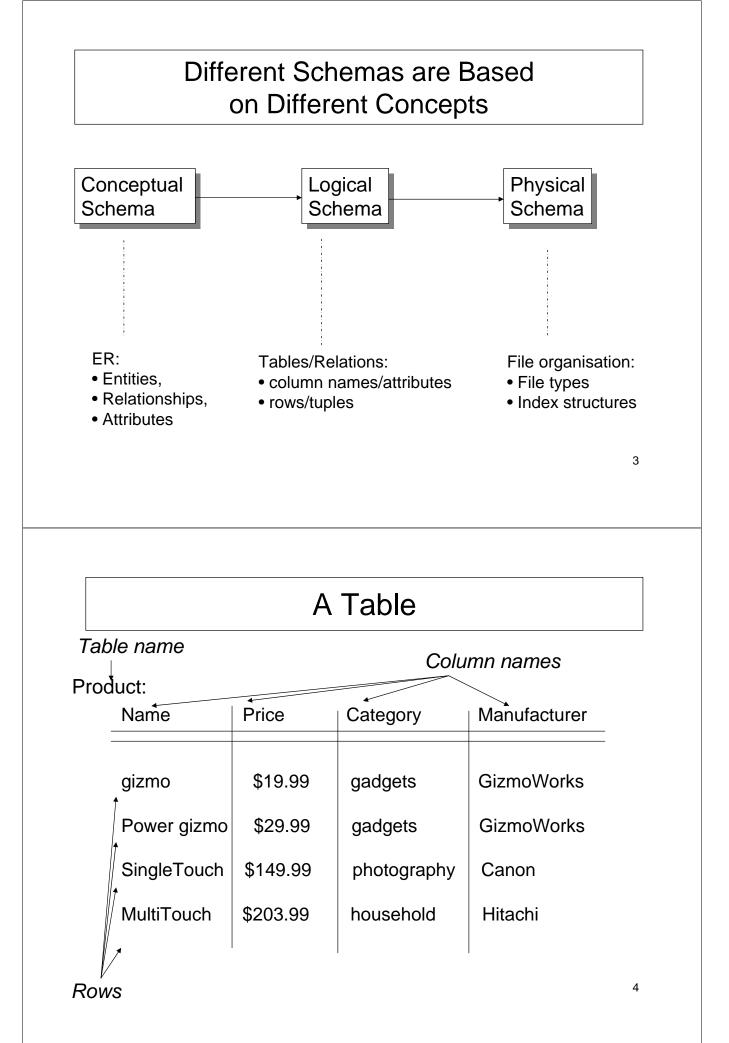
Introduction to Database Systems


The Relational Data Model

Werner Nutt

4. The Relational Data Model

4.1 Schemas

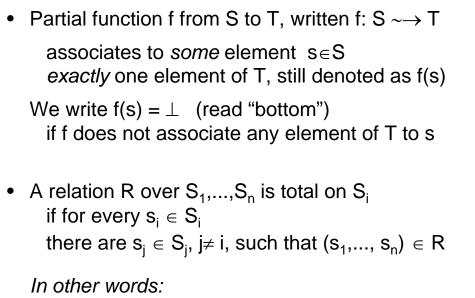
- 1. Schemas
- 2. Instances
- 3. Integrity Constraints

Review of Mathematical Concepts (1)

- Sets: S, T, S₁, ..., S_n, T₁, ..., T_n, { }
 Cardinality of a set S denoted as |S|
- Cartesian Product of sets (also *cross product*): $S \times T$ set of all pairs (s,t) where $s \in S$ and $t \in T$ $S_1 \times ... \times S_n$ set of all n-tuples $(s_1,..., s_n)$ where $s_i \in S_i$
- Relation R over S, T: subset of S × T, written R ⊆ S × T We write (s,t)∈R or, equivalently, sRt

Review of Mathematical Concepts (2)

• Relation R over S₁, ..., S_n:


subset $R \subseteq S_1 \times ... \times S_n$

The number n is the arity of R (R is *binary* if n=2 and *ternary* if n=3)

• Function f from S to T, written f: $S \rightarrow T$

associates to every element $s \in S$ exactly one element of T, denoted as f(s)

Review of Mathematical Concepts (3)

every element of S_i occurs in some tuple of R

Review of Mathematical Concepts (4)

 A relation R over S and T is functional in its first argument if

```
sRt_1 and sRt_2 implies that t_1 = t_2
```

```
for all s \in S, t_1, t_2 \in T.
```

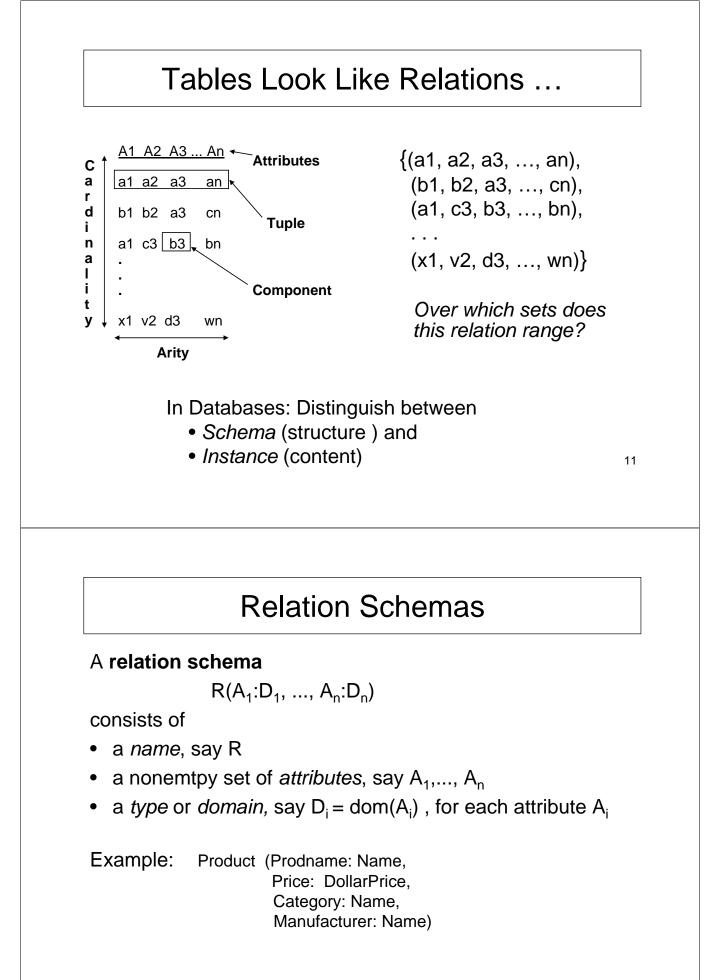
```
In other words, for every s \in S,
```

there is at most one $t \in T$ related by R to s

- Analogously, a relation R over S₁, ..., S_n can be functional

 in an argument i, or
 - in a tuple of arguments, say (i,j,k)

How Many ... ?


Consider sets

S, T with |S| = N and |T| = MS₁, ..., S_n with $|S_i| = N_i$

- How many elements can a relation over S₁, ..., S_n have? At least? At most?
- How many relations over S, T are there? How many over S₁, ..., S_n?
- How many functions from S to T are there?
- How many partial functions from S to T are there?

How Many ... ? (Cntd.)

- How many relations are there over S and T that are functional in the first argument?
- How many relations are there over S and T that are total on S?

Types and Domains

Type: Class of atomic values, e.g.,

- integers, reals, strings
- integers between 15 and 80, strings of (up to) 50 characters

Domain: Set of atomic values, that have a specific meaning in an application, e.g.,

- Name, EmployeeAge
- Domains have a type, e.g.,
 - EmployeeAge = Int[15,80]
- Domains may have default values

Domains allow for an additional layer of abstraction

13

4. The Relational Data Model

4.2 Instances

- 1. Schemas
- 2. Instances
- 3. Integrity Constraints

Relation Schema and Instance

- A tuple of values (v₁, ..., v_n) satisfies the relation schema R(A₁:D₁, ..., A_n:D_n) if v_i ∈ D_i (i=1,...n)
- An instance of R is a set of tuples that satisfy the schema of R
 (i.e., a relation over D₁, ...,D_n)
- Analogy with programming languages:
 - schema = type
 - instance = value

Example

Domain declaration:

Name=String(30), DollarPrice=Decimal (10,2),

Relation schema:

Product(Prodname: Name, Price: DollarPrice, Category: Name, Manufacturer: Name)

Instance:

Prodname	Price	Category	Manufacturer
gizmo	19.99	gadgets	GizmoWorks
Power gizmo	29.99	gadgets	GizmoWorks
SingleTouch	149.99	photography	Canon
MultiTouch	203.99	household	Hitachi

Database Schema and Instance

Database Schema

Set of relation schemas, e.g.,

Product (Productname, Price, Category, Manufacturer),

Vendor (Vendorname, Address, Phone), ...

To keep things simple, we have dropped types/domains

Database Instance we h Set of relation instances, one for each relation in the schema

Important distinction:

- Database Schema = stable over long periods of time
- Database Instance = changes constantly

17

Updates

A database reflects the state of an aspect of the real world: The world changes \rightarrow the database has to change

Updates to an instance:

- 1) adding a tuple
- 2) deleting a tuple
- 3) modifying an attribute of a tuple

What could be updates to a schema?

- Updates to the data happen very frequently.
- Updates to the schema: relatively rare, rather painful. *Why*?

Null Values

Attribute values

- are atomic
- have a known domain
- can sometimes be "null"

Three meanings of null values

- 1. not applicable
- 2. not known
- 3. absent (not recorded)

Student

studno	name	hons	tutor	year	thesis title
s1	jones	са	bush	2	null
s2	brown	cis	kahn	2	null
s3 s4 s5	smith	null	goble	2	null
s4	bloggs	са	goble	1	null
s5	jones	CS	zobel	1	null
s6	peters	са	kahn	3	"A CS Survey"

19

Order and Duplication

In tables:

- Order of attributes is fixed
- Order of rows is fixed (i.e., tables with different order of rows are different)
- Duplicate rows matter

In mathematical relations:

- Order of tuples and duplicate tuples do not matter
- Order of attributes is still fixed

Question:

Can we model relations so that we get rid of attribute order?

Reminder: Relations as Subsets of Cartesian Products

- Tuple as elements of String x Int x String x String
 E.g., t = (gizmo, 19.99, gadgets, GizmoWorks)
- Relation = subset of String x Int x String x String
- Order in the tuple is important !
 - (gizmo, 19.99, gadgets, GizmoWorks)
 - (gizmo, 19.99, GizmoWorks, gadgets)
- No explicit attributes, hidden behind positions

Alternative Definition: Relations as Sets of Functions

• Fix the set A of attributes, e.g.

A = {Name, Price, Category, Manufacturer}

- Fix D as the union of the attribute domains, e.g.,
 - $D = dom(Name) \cup dom(Price) \cup dom(Category) \\ \cup dom(Manufacturer)$
- A tuple is a function t: $A \rightarrow D$
- ► E.g. {Prodname → gizmo, Price → 19.99, Category → gadgets, Manufacturer → GizmoWorks}
- Order in a tuple is not important, attribute names are important!

This is the model underlying SQL

Notation

Schema $R(A_1, ..., A_n)$, tuple t that satisfies the schema Then:

- $t[A_i] = value of t for attribute A_i$
- t[A_i, A_j, A_k]
 = subtuple of t, with values for A_i, A_j, A_k

Example: t = (gizmo, 19.99, gadgets, GizmoWorks)

- t[Price] = 19.99

- t[ProdName, Manufacturer] = (gizmo, GizmoWorks)

Two Definitions of Relations

- Positional tuples, without attribute names
- Tuples as mappings/functions of attributes

In theory and practice, both are used, e.g.,

- SQL: tuples as functions
- QBE (query by example): positional tuples

We will switch back and forth between the two...

Why Relations?

- Very simple model
- Often a good match for the way we think about our data
- Foundations in logic and set theory
- Abstract model that underlies SQL, the most important language in DBMSs today
 - But SQL uses "bags" while the abstract relational model is set-oriented

4. The Relational Data Model

4.3 Integrity Constraints

- 1. Schemas
- 2. Instances
- 3. Integrity Constraints

Integrity Constraints

Ideal: DB instance reflects the real world In real life: This is not always the case Goal: Find out, when DB is out of sync Observation:

Not all mathematically possible instances make sense **Idea:**

- Formulate conditions that hold for all plausible instances
- Check whether the condition holds after an update

Such conditions are called integrity constraints!

Common Types of Integrity Constraints

- Functional Dependencies (FDs)
 - "Employees in the same department have the same boss"
- Superkeys and keys (special case of FDs)
 - "Employees with the same tax code are identical"
- Referential Integrity (also "foreign key constraints")
 - "Employees can only belong to a department that is mentioned in the Department relation"
- Domain Constraints
 - "No employee is younger than 15 or older than 80"

Integrity constraints (ICs) are part of the schema We allow only instances that satisfy the ICs

Functional Dependencies (Example)

Emp (Name, taxCode, Dept, DeptHead)

A state of Emp that contains two tuples with

- the same Dept, but different DeptHead
- the same taxCode, but different Name, Dept, or DeptHead is definitely out of sync.

We write the desired conditions symbolically as

- Dept \rightarrow DeptHead
- taxCode \rightarrow Name, Dept, DeptHead.

We read:

- "Dept functionally determines DeptHead", or
- "Name, Dept, and DeptHead functionally depend on taxCode"

29

Functional Dependencies

DB relation R.

A functional dependency on R is an expression

A1,...,Am \rightarrow B1, ...,Bn

where $A_1, ..., A_m$ and $B_1, ..., B_n$ are attributes of R.

An instance r of R satisfies the FD if for all tuples t1, t2 in R

t1[A1,...,Am] = t2[A1,...,Am] implies t1[B1, ...,Bn] = t2[B1, ...,Bn]

How many FDs are there on a given relation?

FDs: Example

Emp (EmpID, Name, Phone, Position)

with instance

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E1847	Jones	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Brown	1234	Lawyer

Which FDs does this instance satisfy?

- EmpID \rightarrow Name, Phone, Position
- Position \rightarrow Phone
- Phone \rightarrow Position

General Approach for Checking FDs

To check $A \rightarrow B$ on an instance,

• erase all other columns

 А	 В	
X1	Y1	
X2	Y2	

• check if the remaining relation is functional in A

Why is that correct?

FDs: Example (Cntd.)

Check Position \rightarrow Phone !

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E1847	Jones	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Brown	1234	Lawyer

33

Is the white relation functional in Position?

FDs, Superkeys and Keys Person (SSN, Name, DOB) SSN \rightarrow Name, DOB Product (Name, Price, Manufacturer) Name \rightarrow Price, Manufacturer Name \rightarrow Name, Price, Manufacturer Name, Price \rightarrow Name, Price, Manufacturer Book (Author, Title, Edition, Price) Author, Title, Edition \rightarrow Price A set of attributes of a relation is a superkey if it functionally determines all the attributes of the relation A superkey is a candidate key if none of its subsets is a superkey 34 Candidate keys are minimal superkeys

Keys: Definitions

- Superkey
 - a set of attributes whose values together uniquely identify a tuple in a relation
- Candidate Key
 - a superkey for which no proper subset is a superkey:
 a superkey that is *minimal*
 - Can be more than one for a relation
- Primary Key
 - a candidate key chosen to be the main key
 - One for each relation,

indicated by underlining the key attributes

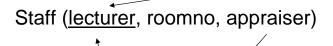
Student(studno,name,tutor,year)

35

Example: Multiple Keys

Student (Lastname, Firstname, MatriculationNo, Major) Candidate key (2 attributes) Note: There are <u>alternate</u> candidate keys

Candidate keys are


{Lastname, Firstname} and

Foreign Keys

A set of attributes in a relation that exactly matches the primary key in another relation

 the names of the attributes don't have to be the same but must be of the same domain

Student (studno, name, hons, tutor, year)

Notation:

FK1: Student (tutor) references Staff (lecturer) FK2: Staff (appraiser) references Staff (lecturer)

37

Satisfaction of Foreign Key Constraints

"FK: R(A) references S(B)"

is satisfied by an instance of R and S if for every t1 in R there is a t2 in S such that t1[A] = t2[B], provided t1[A] is not null

Student

otadont				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	ca	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

Foreign key constraints are also called "referential integrity constraints."

Updates May Violate Constraints ...

Updates are

Insertions, Deletions, Modifications

of tuples

Example DB with tables as before:

Student (<u>studno</u>, name, hons, tutor, year) Staff (<u>lecturer</u>, roomno, appraiser)

The DB has key and foreign key constraints

Questions:

- What can go wrong?
- How should the DBMS react?

39

Insertions (1)

If the following tuple is inserted into Student, what should happen? Why?

(s1, jones, cis, capon, 3)

0.000110				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

Insertions (2)

If the following tuple is inserted into Student, what should happen? Why?

(null, jones, cis, capon, 3)

Student

Oluacht				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

41

Insertions (3)

If the following tuple is inserted into Student, what should happen? Why?

(s7, jones, cis, null, 3)

otadont				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff					
lecturer	roomno	appraiser			
kahn	IT206	watson			
bush	2.26	capon			
goble	2.82	capon			
zobel	2.34	watson			
watson	IT212	barringer			
woods	IT204	barringer			
capon	A14	watson			
lindsey	2.10	woods			
barringer	2.125	null			

Insertions (4)

If the following tuple is inserted into Student, what should happen? Why?

(s7, jones, cis, calvanese, 3)

Student

otadom				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	ca	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

43

Deletions (1)

If the following tuple is deleted from Student, is there a problem? And what should happen?

(s2, brown, cis, kahn, 2)

Otddollt				
studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff					
lecturer	roomno	appraiser			
kahn	IT206	watson			
bush	2.26	capon			
goble	2.82	capon			
zobel	2.34	watson			
watson	IT212	barringer			
woods	IT204	barringer			
capon	A14	watson			
lindsey	2.10	woods			
barringer	2.125	null			

Deletions (2)

And if this one is deleted from Staff ?

(kahn, IT206, watson)

Student

studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff					
lecturer	roomno	appraiser			
kahn	IT206	watson			
bush	2.26	capon			
goble	2.82	capon			
zobel	2.34	watson			
watson	IT212	barringer			
woods	IT204	barringer			
capon	A14	watson			
lindsey	2.10	woods			
barringer	2.125	null			

45

Modifications (1)

What if we change in Student

(s1, jones, ca, bush, 2)

to

(s1, jones, ca, watson, 2) ?

0.000.000				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	ca	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

Modifications (2)

And what if we change in Student

(s2, brown, cis, kahn, 2)

to

(s1, jones, ca, bloggs, 2) ?

Student

ordaoni				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

47

Modifications (3)

And what if we change in Staff

(lindsey, 2.10, woods)

to

(lindsay, 2.10, woods) ?

otadont				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

Modifications (4)

Now, let's change in Staff

(goble, 2.82, capon)

to

(gobel, 2.82, capon) ...

Student

otadont				
studno	name	hons	tutor	year
s1	jones	са	bush	2
s2	brown	cis	kahn	2
s3	smith	CS	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	са	kahn	3

Staff		
lecturer	roomno	appraiser
kahn	IT206	watson
bush	2.26	capon
goble	2.82	capon
zobel	2.34	watson
watson	IT212	barringer
woods	IT204	barringer
capon	A14	watson
lindsey	2.10	woods
barringer	2.125	null

49

Summary: Reactions to Integrity Violations

If an update violates an IC, the DBMS can

- Reject the update
- Repair the violation by
 - inserting null
 - inserting a default value
 - cascading a deletion
 - cascading a modification

Summary

- The relational model is based on concepts from set theory (and logic)
- It formalises the concept of a *table*
- Distinguish:
 - relation schema: relation name, attributes, domains/types
 - relation instance: relation over domains of attributes
- Two formalisations of tuples
 - positional tuples vs. tuples as functions on attributes
- Integrity constraints: Domain cs, FDs, Keys, FKs
- Updates may violate ICs