
Query Execution

Werner Nutt

Introduction to Databases

Free University of Bozen-Bolzano

2
Example Database

Our example queries will

be based on the relations

Sailors and Reserves

• Sailors:

Each tuple 50 bytes long

80 tuples per page

500 pages

• Reserves:

Each tuple 40 bytes long

100 tuples per page

1000 pages

S =

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

R =

sid bid day rcode

22 101 10/10/96 Hoho

58 103 11/12/96 007

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

3
Query Processor: Architecture

Generator Estimator

Plan CostPlan

Query Plan Evaluator

Query Optimizer

Query Parser

Manager

Catalog

Evaluation Plan

Parsed Query

Query

Queries are parsed, optimized, evaluated

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

4
Query Parser

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid = S.sid AND

R.bid = 100 AND

S.rating > 5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Parser creates relational algebra expression of the form

πAttributes(σConditions(R1 1 · · · 1 Rn))

i.e., first join, then select, then project

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

5
Plan Generator

The Plan Generator

• generates a set of equivalent algebra expressions

• annotates the operators with procedures to compute them.

Example:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(On−the−fly)

(On−the−fly)

(Simple Nested Loop Join)

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

6
The Cost of Plans

The optimizer

• estimates for each generated plan the cost,

• then chooses the cheapest plan

Important: Avoid the worst plans!

We will study

1. first, implementations of operators,

2. then, plans that combine operator implementations.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

7
Relational Operators

We will consider how to implement:

• Selection “σ”: selects a subset of rows from relation

• Projection “π”: deletes unwanted columns from relation

• Join “1”: allows us to combine two relations

Each operator returns a relation ; operators can be composed!

First cover operator, then discuss how to optimize queries

formed by composing them.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

8
What is the Cost of an Operator Implementation?

Two parameters:

• Time: How many I/O operations are needed? Depends on
– #pages of input relations

– #records per page

– existence of index etc.

• Result Size: What is the size of the result? Factors as above plus
– selectivity of conditions in a selection or join

– size of attributes projected out

Usually expressed as a “reduction factor”

Both are combined to estimate overall cost of an evaluation plan

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

9
Simple Selections

SELECT *

FROM Reserves R

WHERE R.rcode < ’C%’

General form σR.A op Val(R)

Assumption: M pages of R, pR tuples per page

• Size of result approximated as: (size of R) × (reduction factor)

• No index, unsorted: Relation scan ; cost is M (= #pages in R)

• With index on selection attribute:

Use index to find qualifying data entries,

then retrieve corresponding data records.

(Hash index useful only for equality selections.)

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

10
Using an Index for Selections

Cost depends on #qualifying tuples, and clustering:

Cost of finding qualifying data entries (typically small)

+
Cost of retrieving records (could be large w/o clustering)

Example: Uniform distribution of code names

; ≈ 10% of tuples qualify (100 pages, 10,000 tuples)

clustered index ; cost ≈ 100 IO’s

unclustered index ; cost up to 10,000 IO’s !

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

11
Using an Index for Selections: Refinement

Important refinement for unclustered indexes:

1. Find qualifying data entries

2. Sort the rid’s of the data records to be retrieved

3. Fetch rid’s in order.

This ensures that each data page is looked at just once

(though # of such pages likely to be higher than with clustering).

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

12
More General Selection Conditions

(day<8/9/94 AND rcode=’Hiho’) OR bid=5 OR sid=3

• Each disjunct (i.e, part connected by OR) is processed separately,

. . . then the union is taken of the results.

• An index matches (a conjunction of) conditions

if they involve only attributes in a prefix of the search key, and

if all, but possibly the last, are involved in equality conditions

– E.g., index on 〈a, b, c〉
matches a=5 AND b=3

but not b=3

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

13
First Approach to General Selection

Find the most selective access path,

retrieve tuples using it, and

apply any remaining terms that don’t match the index

• Most selective access path: An index or file scan that we estimate will

require the fewest page I/O’s.

• Conditions that match this index reduce the number of tuples retrieved

• Other terms are used to discard some retrieved tuples,

but do not affect number of tuples/pages fetched.

Example: day<8/9/94 AND bid=5 AND sid=3

• First B+-tree index on day, then check bid=5 and sid=3, or

• First hash-based index on 〈bid, sid〉 then check day<8/9/94

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

14
Second Approach: Intersection of Rid’s

Applicable if we have 2 or more matching indexes that use

Alternatives (2) or (3) for data entries

Using each matching index, get sets of rid’s

Intersect these sets of rid’s (; How?)

Retrieve the records and apply any remaining terms

Example: day < 8/9/94 AND bid=5 AND sid = 3

Assumption: B+-tree index on day and hash-based index on sid

(both using Alternative (2))

– using the B+-tree, get rid’s of records satisfying day<8/9/94

– using the hash-based index, get rid’s satisfying sid=3

– intersect, retrieve records and check bid=5

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

15
A Useful Technique: External Sorting

Example: 2-Way External Sorting with 3 Buffers

• Pass 0: Read a page, sort it, write it

– only one buffer page is used

• Pass 1, 2, 3, . . . , etc.

– three buffer pages used.

INPUT 1

INPUT 2

OUTPUT

DiskDisk Main memory buffers

Generalisations use more buffers

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

16
2-Way External Sorting: Example

• Each pass we read and

write each page in file

• M pages in the file

⇒ number of passes

≈ log
2
M

• Total cost is

≈ M × log
2
M

• Idea: Divide and conquer

i.e., sort subfiles and merge

Input file

1−page ‘run’s

2−page ‘run’s

4−page ‘run’s

8−page ‘run’s

PASS 0

PASS 1

PASS 2

PASS 3

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

9

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

17
General External Merge Sort

More than 3 buffer pages. How can we utilize them?

To sort a file with N pages using B buffer pages:

– Pass 0: use B buffer pages;

produce dN/Be sorted runs of B pages each

– Pass 1, 2,. . . , etc.: merge B − 1 runs

INPUT 1

INPUT 2

INPUT B−1

OUTPUT

Disk Disk
B main memory buffers

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

18
Cost of External Merge Sort

• Number of passes: 1 +
⌈

logB−1
dN/Be

⌉

• Cost = 2N × #passes

Example: Sort 108 page file with 5 buffer pages

Pass 0: d108/5e = 22 sorted runs of 5 pages each

(last run is only 3 pages)

Pass 1: d22/4e = 6 sorted runs of 20 pages each

(last run is only 8 pages)

Pass 2: 2 sorted runs, 80 pages and 28 pages

Pass 3: Sorted file of 108 pages

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

19
Number of Passes of External Merge Sort

N B = 3 B = 5 B = 9 B = 17 B = 129 B = 257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

20
Sorting: Summary

• External sorting is important:

DBMS may dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:

– Pass 0: produces sorted runs of size B (= #buffer pages).

Later passes: merge runs.

– #runs merged at a time depends on B

– In practice, #passes rarely more than 2 or 3

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

21
The Projection Operator

SELECT DISTINCT R.sid, R.bid

FROM Reserves R

Approach based on sorting

• Modify Pass 0 of external sort to eliminate unwanted fields

; tuples in runs are smaller than input tuples

• Modify merging passes to eliminate duplicates

; number of result tuples smaller than input

• Cost
– Pass 0: read original relation (size M pages),

write out same number of smaller tuples

– In merging passes: fewer tuples written out in each pass

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

22
Discussion of Projection

• Sort-based approach is the standard

. . . but there are also hash-based techniques

• If an index contains all wanted attributes in its search key ,

do an index-only scan.
– Apply projection techniques to data entries (much smaller!)

• If a tree-based (i.e., ordered) index contains all wanted attributes

as prefix of search key, do even better:
– Retrieve data entries in order (index-only scan),

– Discard unwanted fields,

– Compare adjacent tuples to check for duplicates.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

23
Equality Joins With One Join Column

SELECT *

FROM Reserves R, Sailors S

WHERE R.sid = S.sid

• In algebra: R 1 S. Common! Must be carefully optimized

R × S is large ; R × S followed by selection is inefficient

• Assume: M pages of R, pR tuples per page,

N pages of S, pS tuples per page.

• In examples, R is Reserves and S is Sailors

• Cost metric: # of I/O’s

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

24
Simple Nested Loops Join

foreach tuple r in R do

foreach tuple s in S do

if ri = sj then add 〈r, s〉 to result

• For each tuple in the outer relation R

we scan the entire inner relation S

– Cost: M + pR × M × N = 1000 + 100 × 1000 × 500 I/O’s.

Page-oriented Nested Loops join:
• For each page of R, get each page of S,

and write out matching pairs of tuples 〈r, s〉
where r is in R-page and s is in S-page.

– Cost: M + M × N = 1000 + 1000 × 500 I/O’s.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

25
Index Nested Loops Join: Idea

R 1R.i = S.j S !

Suppose, there is an index on attribute j of S

; make S inner relation of nested loops join

; exploit index!

foreach tuple r in R do

foreach tuple s in S where ri = sj do

add 〈r, s〉 to result

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

26
Cost of Index Nested Loops Join

Overall cost is

M + (M × pR × cost of finding matching tuples in S)

What is the “cost of finding matching tuples in S”?

• For each tuple in R, probe into S-index

– hash index: ≈ 1.2 I/O

– B+-tree: 2–4 I/O’s

• Then, retrieve all matching S-tuples

– clustered index: 1 I/O typically

– unclustered: up to 1 I/O per tuple

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

27
Block Nested Loops Join

Why keep only one page of R in buffer? Better:

• one page as input buffer for scanning the inner S

• one page as the output buffer

• all remaining pages hold block of outer R

B main memory buffers

l

Input buffer Output buffer

Disk

Join Result

Disk

Relations R and S

(to scan all of S)

Hash table for block R
(k =< B−2 pages)

For each matching tuple r in R-block, s in S-page,

add 〈r, s〉 to result.

Then read next R-block, scan S, etc.

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

28
Sort-Merge Join (1)

R 1R.i = S.j S !

Idea: Sort R on R.i and S on S.j

then scan R and S to do a “merge” on join colums

. . . and output result tuples

After sorting, how do we find the next pair of matching tuples?

while (R.i 6= S.j)

{while (R.i < S.j)

advance scan of R;

while (R.i > S.j)

advance scan of S;}

Under

which assumption

is this code

correct?

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

29
Sort-Merge Join (2)

At this point: (R.i = S.j)

From here on,

• all R tuples with the same value in R.i (the current R group)

• and all S tuples with same value in S.j (the current S group)
match!

; output 〈r, s〉 for all pairs of such tuples!

Then resume scanning R and S

Total cost: sorting(R) + sorting(S) + M + N

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

30
Hash Join: Principles

Two phases

• Partitioning (or “building”): Each of R and S are divided into

partitions R1, . . . , Rk and S1, . . . , Sk, using a hash function h

• Probing (or “matching”): Tuples in Ri and Si are matched using a

different hash function h2

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

31
Hash Join: Partitioning

Partition R and S using a hash function h

⇒ R tuples in partition i will only match S tuples in partition i

B main memory buffers DiskDisk

INPUT

OUTPUT 1

hash

function

h

B−1

Original Relation Partitions

1

2

B−1

2

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

32
Hash Join: Probing

• Read in a partition of R, hash it using h2 (6= h!)

• Scan matching partition of S, search for matches

B main memory buffers
Disk

(k < B−1 pages)

Input buffer Output buffer

Partitions
of R and S

Disk

Join Result

hash

function

h2

h2 Hash table for partition Ri

(To scan Si)

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

33
How Much Buffer Space Do We Need?

Constraints:

• k (= # partitions) ≤ B − 1

• size of largest partition to be held in memory ≤ B − 2

Assumption: all partitions have equal size. Then:

• k = B − 1 and M/(B − 1) ≤ B − 2 ⇒ B ≥
√

M

Optimisation: Use an in-memory hash to compute matching tuples

⇒ more memory is needed

Possible Problem: The hash function does not partition uniformly

⇒ one or more R partitions may not fit into memory

Solution: Apply hash-join technique recursively

to join this R-partition with corresponding S-partition

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

34
Hash Join: Analysis

Cost:

• Partitioning phase: read and write both R and S ⇒ 2(M + N) I/Os

• Probing phase: read both R and S ⇒ M + N I/Os

• In the running example: 4500 I/Os in total

Sort-Merge Join vs. Hash Join

• Both have cost of 3(M +N) I/Os if sufficient(?) memory is available

• Hash Join is superior if relation sizes differ greatly

(proof needs some assumptions about internal sorting method)

• Hash Join can be parallelized

• Sort-Merge is less sensitive to data skew

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

35
Query Optimization: Example

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid = S.sid AND

R.bid = 100 AND

S.rating > 5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

• Cost of this plan: 500 + 500 × 1000 I/O’s

• Missed opportunities:
– selections have not been “pushed”

– no indexes are used

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

36
Alternative Plans: No Indexes

Main difference:

selections pushed down

Cost of plan

(with 5 buffers): Reserves Sailors

sid=sid

bid=100

sname
(On−the−fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort−Merge Join)

scan Reserves (1, 000 pages)

+ write temporary T1 (10 pages, if #boats = 100 and uniform distribution)

scan Sailors (500 pages)

+ write temporary T2 (250 pages, if #ratings = 10)

sort T1 (2× 2× 10 I/O’s) + sort T2 (2× 4× 250 I/O’s)

+ merge T1 and T2 (10 + 250 I/O’s)

4, 060 page I/O’s

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

37
Alternative Plan with Indexes

With clustered index on bid of Reserves:

100, 000/100 = 1, 000 tuples on 1, 000/100 = 10 pages

Index nested loops join with “pipelining”

(i.e., outer relation is not materialized

; projection doesn’t help)

Join attribute sid is a key for Sailors

at most one tuple in Sailors matches

; clustering wouldn’t help)

Selection σrating>5 is not pushed

because join is based on index for sid Reserves

Sailors

sid=sid

bid=100

sname
(On−the−fly)

rating > 5

(Index Nested Loops,
with pipelining)

(On−the−fly)

result to
temp)

Use index;
do not write

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

38
Alternative Plan with Indexes (Cntd.)

Cost:

• Selection of Reserves tuples: 10 I/O’s

• For each, retrieve matching tuples from

Sailors: 1, 000 × 1.2 I/O’s

• Total: 1, 210 I/O’s

Reserves

Sailors

sid=sid

bid=100

sname
(On−the−fly)

rating > 5

(Index Nested Loops,
with pipelining)

(On−the−fly)

result to
temp)

Use index;
do not write

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

39
Summary

• Query optimization (QO) is an important task in a relational DBMS

• Understanding of QO is necessary to understand the impact
; of a given database design (relations, indexes)

; on the workload (= set of queries)

• QO has two parts:

– Enumeration of alternative plans

; pruning of search space: left-deep plans only

– Estimation of cost of enumerated plans

; size of results

; cost of each plan node

Key issues: Statistics, indexes, operator implementations

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

40
References

These slides are based on Chapters 12, 13, 14, and 15 of the book

Database Management Systems by R. Ramakrishnan and J. Gehrke, and

on slides by the authors published at

www.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html

Introduction to Databases Werner Nutt Free University of Bozen-Bolzano

