
Introduction to Databases Fall-Winter 2009/10

Exercises Michail Kazimianec
Werner Nutt

Damiano Somenzi

Transactions and JDBC Applications

For the first part of these exercises you are asked to experiment with the transaction
processing features of PostgreSQL.

Exercise 1 Create a deadlock of two transactions. To do so, create an appropriate
table. Then define two transactions, by writing them into your pgAdmin editor, that
will lead to a deadlock. Execute them concurrently so that the deadlock shows up.
Observe what happens.

Recall that a DBMS ensures serializable execution of transactions if for any trans-
actions T1, . . . , Tn that are executed concurrently there is some ordering Ti1 , . . . , Tin

such that executing the transaction in this order yields identical outputs and the same
final result.

Exercise 2 Test whether PostgreSQL is able to ensure serializable execution of trans-
actions. To do so, run the boat reservation example of the lecture under the four differ-
ent isolation levels. What are the differences? Does the level “serializable” guarantee
serializability?

For the second part, you are asked to write several Java applications that manage a
database through JDBC. An example application, showing how to connect to a database
with JDBC, is found at:

http://www.inf.unibz.it/∼nutt/IDBs0910
/IDBExercises/ExampleJDBC.zip.

Exercise 3 Choose a table in the database and write an application that (i) prints the
number of records in the table and (ii) prints the number of records without NULL as
attribute value. Is it possible to write the application in such a way that it executes only
one query “select * from 〈tablename 〉” to answer all the above questions?

Exercise 4 Write an application that inserts numerical data into a table. The appli-
cation (i) retrieves the input values from the command line and (ii) uses a prepared-
Statement for insert operations. The application must restore the initial state of the
table as soon as a negative number appears in the input.

Exercise 5 Write an application that connects to a database through JDBC and (i)
prints the names of all tables in the database, (ii) for each table of the database prints
its columns, (iii) for each column of the table prints its type.

Hints: You find sample code with the Java classes discussed in the lectures on the Web
page with the coursework instructions. For further information on JDBC consult the
online tutorial at

http://java.sun.com/docs/books/tutorial/jdbc/TOC.html.

To retrieve data about the database, like in the first exercise, note that JDBC has an
interface DatabaseMetaData and that the method getMetaData, when applied to a
connection, returns an instance of this interface.


