
Introduction to Databases Fall-Winter 2009/10

Exercises Michail Kazimianec
Werner Nutt

Damiano Somenzi

Relational Algebra: Sample Solutions

Note that the solutions given here are samples, i.e., there may be many more ways to
express these queries in relational algebra.

1. Write queries in relational algebra

Write the following queries in relational algebra.

1. “Find the names of suppliers who supply some red part.”

πsname((σcolour=′red′(Part) 1 Catalog) 1 Supplier))

Since there is not subscript under the joins, the joins are natural joins, i.e., the
common attributes are equated.

2. “Find the IDs of suppliers who supply some red or green part.”

πsid(σcolour=′red′ ∨ colour=′green′(Part) 1 Catalog)

An equivalent formulation uses the union operator

πsid(σcolour=′red′ (Part) 1 Catalog ∪ σcolour=′green′ (Part) 1 Catalog).

The latter version can be refined by pushing the projection through the union:

πsid(σcolour=′red′ (Part) 1 Catalog) ∪ πsid(σcolour=′green′ (Part) 1 Catalog).

3. “Find the IDs of suppliers who supply some red part or are based at 21 George
Street.”

πsid(σcolour=′red′ (Part) 1 Catalog) ∪ πsid(σaddress=′21G.S.′ (Supplier)).

4. “Find the names of suppliers who supply some red part or are based at 21 George
Street.”

πsname(σcolour=′red′ (Part) 1 Catalog 1 Supplier)
∪ πsname(σaddress=′21G.S.′ (Supplier)).

Alternatively, we can pull the projection on sname to the top level.

πsname(σcolour=′red′ (Part) 1 Catalog 1 Supplier

∪ σaddress=′21G.S.′ (Supplier)).

1



5. “Find the IDs of suppliers who supply some red part and some green part.”

πsid(σcolour=′red′ (Part) 1 Catalog) ∩ πsid(σcolour=′green′ (Part) 1 Catalog)

Alternatively, we can replace the intersection with a join:

πsid(σcolour=′red′ (Part) 1 Catalog) 1 πsid(σcolour=′green′ (Part) 1 Catalog).

6. “Find pairs of sids such that the supplier with the first sid charges more for some
part than the supplier with the second sid.”

First, by creating temporary copies we introduce two versions of Catalog:

Cat1 ← Catalog

Cat2 ← Catalog.

Then we join the two versions and take the projection:

πCat1.sid,Cat2.sid(Cat1 1Cat1.pid=Cat2.pid∧Cat1.cost>Cat2.cost Cat2)

Note that we have to qualify the attributes by the relation name because both
relations have attributes with the same names.

7. “Find the IDs of suppliers who supply only red parts.”

πsid(Supplier) \ πsid(Catalog 1 σcolour 6=′red′ (Part)).

8. “Find the IDs of suppliers who supply every part.”

First, we observe that the projection of Catalog on the attributes sid and pid,

πsid,pid(Catalog)

contains all pairs of suppliers and the parts they supply, expressed by sids and
pids.

The Cartesian product

πsid(Catalog)× πpid(Part)

contains all possible combinations of (1) the suppliers that supply something
with (2) all the products.

If we take the set-theoretic difference of the second and the first relation,

πsid(Catalog)× πpid(Part) \ πsid,pid(Catalog),

we obtain those combinations of suppliers and parts where the supplier does not
deliver the part. Let us store the difference in the temporary relation Temp1:

Temp1 ← πsid(Catalog)× πpid(Part) \ πsid,pid(Catalog).

Now, πsid(Temp1), the projection of this relation onto the attribute sid, gives
us the suppliers that do not supply some part, i.e., some part is missing in their
range of products.

2



However, πsid(Catalog), the projection of Catalog onto sid gives us the suppli-
ers that do supply at least some part.

Therefore,
πsid(Catalog) \ πsid(Temp1),

the difference of the latter and the former, gives us the sid’s of suppliers that

– supply something, and

– have no part missing in their range of products.

That means, it gives us the sid’s of the suppliers that supply all parts.

2. Queries in relational algebra, what do they mean?

For each of the following relational algebra queries, say what they mean.

1. πsname(σcolour=′red′(Part) 1 σcost<100 (Catalog) 1 Supplier)

“Find the names of suppliers supplying some red part for less than 100 Quid.”

2. πsname(πsid(σcolour=′red′(Part) 1 σcost<100 (Catalog)) 1 Supplier)

“Find the names of suppliers supplying some red part for less than 100 Quid.”
This query is an optimized version of the previous one: from the join of Part and

Catalog it retains only the projection onto sid. Then it uses sid to retrieve the
snames of the suppliers.

3. πsname(σcolour=′red′(Part) 1 σcost<100 (Catalog) 1 Supplier) ∩
πsname(σcolour=′green′(Part) 1 σcost<100 (Catalog) 1 Supplier)

“Find the names of suppliers such that there is a supplier with that name supply-
ing some red part for less than 100 Quid and a supplier with that name supplying
some green part for less than 100 Quid.”

The English rendering of the query sounds unnecessarily complicated. How-
ever, as the following example shows, the complicated formulation is needed to
express the meaning of the query.

Suppose there are two distinct suppliers, both with the name ’Smith’, such
that the first Smith supplies some red part for less than 100, and the second
Smith supplies some green part for less than 100. Then the name ’Smith’ is
returned by this query, even if the first Smith doesn’t supply a green part, and the
second doesn’t supply a red part.

4. πsid(σcolour=′red′(Part) 1 σcost<100 (Catalog) 1 Supplier) ∩
πsid(σcolour=′green′(Part) 1 σcost<100 (Catalog) 1 Supplier)

“Find the sids of suppliers supplying some red part for less than 100 Quid
and some green part for less than 100 Quid, and return only sid’s of suppliers
recorded in the table Supplier.”

3



If there is a foreign key constraint on Catalog(sid), then the join with Supplier is
superfluous. (Some query optimisers find out such redundant joins. For instance,
Microsoft’s SQL Server eliminates joins that are redundant because of foreign
key constraints, and it eliminates parts of the query that are inconsistent.)

5. πsname(πsid,sname(σcolour=′red′(Part) 1 σcost<100 (Catalog) 1 Supplier) ∩
πsid,sname(σcolour=′green′(Part) 1 σcost<100 (Catalog) 1 Supplier))

“Find the names of suppliers supplying some red part for less than 100 Quid and
some green part for less than 100 Quid.”

This is the query that intuitively makes most sense.

4


