
Ontology and Database Systems:
Foundations of Database Systems

Part 5: Datalog

Werner Nutt

Faculty of Computer Science
European Master in Computational Logic

A.Y. 2017/2018

Foundations of Database Systems

Motivation

Relational Calculus and Relational Algebra were considered to be “the” database
languages for a long time

Codd: A query language is “complete,” if it yields Relational Calculus

However, Relational Calculus misses an important feature: recursion

Example: A metro database with relation links:line, station, nextstation

What stations are reachable from station “Odeon”?
Can we go from Odeon to Tuileries?
etc.

It can be proved: such queries cannot be expressed in Relational Calculus

This motivated a logic-programming extension to conjunctive queries: datalog

W. Nutt ODBS-FDBs 2017/2018 (1/47)

Foundations of Database Systems

Example: Metro Database Instance

link line station nextstation
4 St. Germain Odeon
4 Odeon St. Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

Datalog program for the first query:

reach(X, X) ← link(L, X, Y)
reach(X, X) ← link(L, Y, X)
reach(X, Y) ← link(L, X, Z), reach(Z, Y)
answer(X) ← reach(‘Odeon‘, X)

Note: this is a recursive definition

Intuitively, if the part right of “←” is true,
the rule “fires” and the atom left of “←” is concluded.

W. Nutt ODBS-FDBs 2017/2018 (2/47)

Foundations of Database Systems

Exercise

Write the following queries in datalog:

Which stations can be reached from Chatelet, using exactly one line?
(This excludes staying at Chatelet).

Which stations can be reached from one another using exactly one line?

Which stations can be reached from one another?
(Check whether the query in the example is correct!)

Which stations are terminal stops?

W. Nutt ODBS-FDBs 2017/2018 (3/47)

Foundations of Database Systems

The Datalog Language

Datalog is akin to Logic Programming

The basic language (considered next) has many extensions

There exist several approaches to defining the semantics:

Model-theoretic approach: View rules as logical sentences,
which state the query result

Operational (fixpoint) approach: Obtain query result by applying
an inference procedure, until a fixpoint is reached

Proof-theoretic approach: Obtain proofs of facts in the query result,
following a proof calculus (based on resolution)

W. Nutt ODBS-FDBs 2017/2018 (4/47)

Foundations of Database Systems

Datalog vs. Logic Programming

Although datalog is akin to Logic Programming,
there are important differences:

There are no functions symbols in datalog
; no unbounded data structures, such as lists, are supported

Datalog has a purely declarative semantics
; In a datalog program,

the order of clauses is irrelevant
the order of atoms in a rule body is irrelevant

Datalog distinguishes between

database relations (“extensional database”, edb) and
derived relations (“intensional database”, idb)

W. Nutt ODBS-FDBs 2017/2018 (5/47)

Foundations of Database Systems

Syntax of “plain datalog”, or “datalog”

Definition

A datalog rule r is an expression of the form

R0(x̄0)← R1(x̄1), . . . , Rn(x̄n) (1)
where

n ≥ 0,

R0, . . . , Rn are relations names,

x̄0, . . . , x̄n are tuples of variables and constants (from dom), and

every variable in x̄0 occurs in x̄1, . . . , x̄n (“safety”)

Remark

The head of r, denoted H(r), is R0(x̄0)

The body of r, denoted B(r), is { R1(x̄1), . . . , Rn(x̄n) }
The rule symbol “←” is often also written as “:-”

W. Nutt ODBS-FDBs 2017/2018 (6/47)

Foundations of Database Systems

Datalog Programs

Definition

A datalog program is a finite set of datalog rules.

Let P be a datalog program.

An extensional relation of P is a relation occurring only in rule bodies of P

An intensional relation of P is a relation occurring in the head of some rule in P

The extensional schema of P , edb(P), consists of all extensional relations of P

The intensional schema of P , idb(P), consists of all intensional relations of P

The schema of P , sch(P), is the union of edb(P) and idb(P).

W. Nutt ODBS-FDBs 2017/2018 (7/47)

Foundations of Database Systems

The Metro Example /1

Datalog program P on the metro database schema (w/o integrity constraints)

M = {link(line, station, nextstation)} :

reach(X, X) ← link(L, X, Y)

reach(X, X) ← link(L, Y, X)

reach(X, Y) ← link(L, X, Z), reach(Z, Y)

answer(X) ← reach(’Odeon’,X)

Here,

edb(P) = {link} (=M),

idb(P) = {reach, answer},
sch(P) = {link, reach, answer}

W. Nutt ODBS-FDBs 2017/2018 (8/47)

Foundations of Database Systems

Datalog Syntax (cntd)

The set of constants occurring in program P is denoted as adom(P)

The active domain of P with respect to an instance I is defined as

adom(P, I) := adom(P) ∪ adom(I),

that is, as the set of constants occurring in P and I

Definition (Rule Instantiation)

Let α : var(r) ∪ dom→ dom be an assignment for the variables in a rule r of
form (1). Then the instantiation of r with α, denoted α(r), is the rule

R0(α(x̄0))← R1(α(x̄1)), . . . , Rn(α(x̄n)),

which results from replacing each variable x with α(x).

W. Nutt ODBS-FDBs 2017/2018 (9/47)

Foundations of Database Systems

The Metro Example/2

For the datalog program P above, we have that adom(P) = { Odeon }

We consider the database instance I:

link line station nextstation

4 St. Germain Odeon
4 Odeon St. Michel
4 St. Michel Chatelet
1 Chatelet Louvre
1 Louvre Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

Then adom(I) = {4, 1, St.Germain, Odeon, St.Michel, Chatelet,
Louvres, Palais-Royal, Tuileries, Concorde}

Also adom(P, I) = adom(I)

W. Nutt ODBS-FDBs 2017/2018 (10/47)

Foundations of Database Systems

The Metro Example/3

The rule

reach(St.Germain, Odeon) ← link(Louvre, St.Germain, Concorde),

reach(Concorde, Odeon)

is an instantiation of the rule

reach(X, Y) ← link(L, X, Z), reach(Z, Y)

(take α(X) = St.Germain, α(L) = Louvre, α(Y) = Odeon,

α(Z) = Concorde)

W. Nutt ODBS-FDBs 2017/2018 (11/47)

Foundations of Database Systems

Datalog: Model-Theoretic Semantics

General Idea:

We view a program as a set of first-order sentences

Given an instance I of edb(P),
the result of P is a database instance of sch(P)

that extends I and satisfies the sentences
(or, is a model of the sentences)

There can be many models

The intended answer is specified by particular models

These particular models are selected by “external” conditions

W. Nutt ODBS-FDBs 2017/2018 (12/47)

Foundations of Database Systems

Logical Theory ΣP

To every datalog rule r of the form R0(x̄0)← R1(x̄1), . . . , Rn(x̄n), with
variables x1, . . . , xm, we associate the logical sentence σ(r):

∀x1, · · · ∀xm (R1(x̄1) ∧ · · · ∧Rn(x̄n)→ R0(x̄0))

To a program P , we associate the set of sentences ΣP = {σ(r) | r ∈ P}

Definition

Let P be a datalog program and I an instance of edb(P). Then,

A model of P is an instance of sch(P) that satisfies ΣP

We compare models wrt set inclusion “⊆”
(in the Logic Programming perspective)

The semantics of P on input I, denoted P (I),
is the least model of P containing I, if it exists

W. Nutt ODBS-FDBs 2017/2018 (13/47)

Foundations of Database Systems

Example

For program P and instance I of the Metro Example, the least model is:

link line station nextstation
4 St. Germain Odeon
4 Odeon St. Michel
4 St. Michel Chatelet
1 Chatelet Louvres
1 Louvres Palais-Royal
1 Palais-Royal Tuileries
1 Tuileries Concorde

reach
St. Germain St. Germain
Odeon Odeon

· · ·
Concorde Concorde
St. Germain Odeon
St. Germain St.Michel
St. Germain Chatelet
St. Germain Louvre

· · ·
answer

Odeon
St. Michel
Chatelet
Louvre
Palais-Royal
Tuileries
Concorde

W. Nutt ODBS-FDBs 2017/2018 (14/47)

Foundations of Database Systems

Questions

1 Is the semantics P (I) well-defined for every input instance I?

2 How can one compute P (I)?

Observation: For any I, there is a model of P containing I

Let B(P, I) be the instance of sch(P) such that

B(P, I)(R) =

{
I(R) for each R ∈ edb(P)

adom(P, I)ary(R) for each R ∈ idb(P)

Then: B(P, I) is a model of P containing I

⇒ P (I) is a subset of B(P, I) (if it exists)

Naive algorithm: explore all subsets of B(P, I)

W. Nutt ODBS-FDBs 2017/2018 (15/47)

Foundations of Database Systems

Elementary Properties of P (I)

Let P be a datalog program, I an instance of edb(P), and M(I) the set of all
models of P containing I.

Theorem

The intersection
⋂

M∈M(I)M is a model of P .

Corollary

1 P (I) =
⋂

M∈M(I)M

2 adom(P (I)) ⊆ adom(P, I), that is, no new values appear

3 P (I)(R) = I(R), for each R ∈ edb(P)

Consequences:

P (I) is well-defined for every I

If P and I are finite, the P (I) is finite

W. Nutt ODBS-FDBs 2017/2018 (16/47)

Foundations of Database Systems

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

1 The Closed World Assumption:

If a fact R(c̄) is not true in all models of a database I,
then infer that R(c̄) is false
This amounts to considering I as complete
. . . which is customary in database practice

2 The relationship to Logic Programming:

Datalog should desirably match Logic Programming
(seamless integration)
Logic Programming builds on the minimal model semantics

W. Nutt ODBS-FDBs 2017/2018 (17/47)

Foundations of Database Systems

Relating Datalog to Logic Programming

A logic program makes no distinction between edb and idb

A datalog program P and an instance I of edb(P) can be mapped to the
logic program

P(P, I) = P ∪ I

(where I is viewed as a set of atoms in the Logic Programming perspective)

Correspondingly, we define the logical theory

ΣP,I = ΣP ∪ I

The semantics of the logic program P = P(P, I) is defined in terms of
Herbrand interpretations of the language induced by P:

– The domain of discourse is formed by the constants occurring in P
– Each constant occurring in P is interpreted by itself

W. Nutt ODBS-FDBs 2017/2018 (18/47)

Foundations of Database Systems

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition

For a (function-free) logic program P, we define

the Herbrand universe of P, by

HU(P) =
⋃
r∈P

Const(r)

the Herbrand base of P, by

HB(P) = {R(c1, . . . , cn) | R is a relation in P,
c1, . . . , cn ∈ HU(P), and ary(R) = n}

W. Nutt ODBS-FDBs 2017/2018 (19/47)

Foundations of Database Systems

Example

P = { arc(a, b).
arc(b, c).
reachable(a).
reachable(Y)← arc(X, Y), reachable(X). }

HU(P) = {a, b, c}

HB(P) = {arc(a, a), arc(a, b), arc(a, c),
arc(b, a), arc(b, b), arc(b, c),
arc(c, a), arc(c, b), arc(c, c),
reachable(a), reachable(b), reachable(c)}

W. Nutt ODBS-FDBs 2017/2018 (20/47)

Foundations of Database Systems

Grounding

A rule r′ is a ground instance of a rule r with respect to HU(P),
if r′ = α(r) for an assignment α

such that α(x) ∈ HU(P) for each x ∈ var(r)

The grounding of a rule r with respect to HU(P),
denoted GroundP(r),

is the set of all ground instances of r wrt HU(P)

The grounding of a logic program P is

Ground(P) =
⋃
r∈P

GroundP(r)

W. Nutt ODBS-FDBs 2017/2018 (21/47)

Foundations of Database Systems

Example

Ground(P) = {arc(a, b). arc(b, c). reachable(a).
reachable(a)← arc(a, a), reachable(a).
reachable(b)← arc(a, b), reachable(a).
reachable(c)← arc(a, c), reachable(a).
reachable(a)← arc(b, a), reachable(b).
reachable(b)← arc(b, b), reachable(b).
reachable(c)← arc(b, c), reachable(b).
reachable(a)← arc(c, a), reachable(c).
reachable(b)← arc(c, b), reachable(c).
reachable(c)← arc(c, c), reachable(c). }

W. Nutt ODBS-FDBs 2017/2018 (22/47)

Foundations of Database Systems

Herbrand Models

A Herbrand-interpretation I of P is any subset I ⊆ HB(P)

A Herbrand-model of P is a Herbrand-interpretation that satisfies all
sentences in ΣP,I

Equivalently, M ⊆ HB(P) is a Herbrand model if
for all r ∈ Ground(P) such that B(r) ⊆M

we have that H(r) ⊆M

W. Nutt ODBS-FDBs 2017/2018 (23/47)

Foundations of Database Systems

Example

The Herbrand models of program P above are exactly the following:

M1 = { arc(a, b), arc(b, c),

reachable(a), reachable(b), reachable(c) }

M2 = HB(P)

every interpretation M such that M1 ⊆M ⊆M2

and no others.

W. Nutt ODBS-FDBs 2017/2018 (24/47)

Foundations of Database Systems

Logic Programming Semantics

Proposition

HB(P) is always a model of P

Theorem

For every logic program there exists a least Herbrand model (wrt “⊆”).

For a program P, this model is denoted MM(P) (for “minimal model”).
The model MM(P) is the semantics of P.

Theorem (Datalog ↔ Logic Programming))

Let P be a datalog program and I be an instance of edb(P). Then,

P (I) = MM(P(P, I))

W. Nutt ODBS-FDBs 2017/2018 (25/47)

Foundations of Database Systems

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

proof procedures for Logic Programming (e.g., SLD resolution) can be
applied to datalog (with some caveats, regarding for instance termination)

datalog can be reduced by “grounding” to propositional logic programs

W. Nutt ODBS-FDBs 2017/2018 (26/47)

Foundations of Database Systems

Fixpoint Semantics

Another view:

“If all facts in I hold, which other facts must hold
after firing the rules in P?”

Approach:

Define an immediate consequence operator TP (K) on db instances K

Start with K = I

Apply TP to obtain a new instance: Knew := TP (K) = I ∪ new facts

Iterate until nothing new can be produced

The result yields the semantics

W. Nutt ODBS-FDBs 2017/2018 (27/47)

Foundations of Database Systems

Immediate Consequence Operator

Let P be a datalog program and K be a database instance of sch(P).
A fact R(t̄) is an immediate consequence for K and P , if either

R ∈ edb(P) and R(t̄) ∈ K, or

there exists a ground instance r of a rule in P such that
H(r) = R(t̄) and B(r) ⊆ K.

Definition (Immediate Consequence Operator)

The immediate consequence operator of a datalog program P is the mapping

TP : inst(sch(P))→ inst(sch(P))

where

TP (K) = {A | A is an immediate consequence for K and P}.

W. Nutt ODBS-FDBs 2017/2018 (28/47)

Foundations of Database Systems

Example

Consider

P = { reachable(a),
reachable(Y)← arc(X, Y), reachable(X) }

where edb(P) = {arc} and idb(P) = {reachable}.

Let

I = K1 = {arc(a, b), arc(b, c)}
K2 = {arc(a, b), arc(b, c), reachable(a)}
K3 = {arc(a, b), arc(b, c), reachable(a), reachable(b) }
K4 = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

W. Nutt ODBS-FDBs 2017/2018 (29/47)

Foundations of Database Systems

Example (cntd)

Then,

TP (K1) = {arc(a, b), arc(b, c), reachable(a)} = K2

TP (K2) = {arc(a, b), arc(b, c), reachable(a), reachable(b)} = K3

TP (K3) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)} = K4

TP (K4) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)} = K4

Thus, K4 is a fixpoint of TP .

Definition

K is a fixpoint of operator TP if TP (K) = K

W. Nutt ODBS-FDBs 2017/2018 (30/47)

Foundations of Database Systems

Properties

Proposition

Let P be a datalog program.

1 The operator TP is monotonic, that is,

K ⊆ K′ implies TP (K) ⊆ TP (K′);

2 For all K ∈ inst(sch(P)), we have:

K is a model of ΣP if and only if TP (K) ⊆ K;

3 If TP (K) = K (i.e., K is a fixpoint), then K is a model of ΣP .

Note: The converse of 3. does not hold in general.

W. Nutt ODBS-FDBs 2017/2018 (31/47)

Foundations of Database Systems

Datalog Semantics via Least Fixpoint

The semantics of P on a database instance I of edb(P) is a special fixpoint:

Theorem

Let P be a datalog program and I be a database instance. Then

1 TP has a least (wrt “⊆”) fixpoint containing I, denoted lfp(P, I).

2 Moreover, lfp(P, I) = MM(P(P, I)) = P (I).

Constructive definition of P (I) by fixpoint iteration

Proof (of Claim 2, first equality, sketch).

Let M1 = lfp(P, I) and M2 = MM(P(P, I)).
Since M1 is a fixpoint of TP , it is a model of ΣP , and since it contains I it is a model
of P(P, I). Hence, M2 ⊆M1. Since M2 is a model of P(P, I), it holds that
TP (M2) ⊆M2. Note that for every model M of P(P, I) we have, due to the
monotonicity of TP , that TP (M) is model. Hence, TP (M2) = M2, since M2 is a
minimal model. This implies that M2 is a fixpoint, hence M1 ⊆M2.

W. Nutt ODBS-FDBs 2017/2018 (32/47)

Foundations of Database Systems

Fixpoint Iteration

For a datalog program P and an instance I, we define the sequence (Ii)i≥0 by

I0 = I

Ii = TP (Ii−1) for i > 0.

We observe:

By monotoncity of TP , we have I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ Ii+1 ⊆ · · ·

For every i ≥ 0, we have Ii ⊆ B(P, I)

Hence, for some integer n ≤ |B(P, I)|, we have In+1 = In (=: Tω
P (I))

It holds that Tω
P (I) = lfp(P, I) = P (I).

This can be readily implemented by an algorithm.

W. Nutt ODBS-FDBs 2017/2018 (33/47)

Foundations of Database Systems

Example

P = { reachable(a),
reachable(Y)← arc(X,Y), reachable(X) }

I = {arc(a, b), arc(b, c)}

Then,

I0 = {arc(a, b), arc(b, c)}

I1 = T1
P (I) = {arc(a, b), arc(b, c), reachable(a)}

I2 = T2
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b)}

I3 = T3
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

I4 = T4
P (I) = {arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c)}

= T3
P (I)

Thus, Tω
P (I) = lfp(P, I) = I4.

W. Nutt ODBS-FDBs 2017/2018 (34/47)

Foundations of Database Systems

Excursion: Fixpoint Theory

Evaluating a datalog program P on I
amounts to evaluating the logic program P(P, I)

For logic programs, fixpoint semantics is defined
by appeal to fixpoint theory

This provides another possibility to define semantics of datalog programs

W. Nutt ODBS-FDBs 2017/2018 (35/47)

Foundations of Database Systems

Excursion: Fixpoint Theory/2

A complete lattice is a partially ordered set (U,≤) such that each subset
V ⊆ U has a least upper bound sup(V) and a greatest lower bound inf(V),
respectively.

An operator T : U → U is

monotone, if for every x, y ∈ U it holds that x ≤ y implies
T (x) ≤ T (y)
continuous, if T (sup(V)) = sup({T (x) | x ∈ V } for every V ⊆ U .

Notice: Continuous operators are monotone
Monotone and continuous operators have nice fixpoint properties

W. Nutt ODBS-FDBs 2017/2018 (36/47)

Foundations of Database Systems

Fixpoint Theorems of Knaster-Tarski and Kleene

Theorem

Every monotone operator T on a complete lattice (U,≤) has a least fixpoint
lfp(T), and lfp(T) = inf({x ∈ U | T (x) ≤ x}).

A stronger theorem holds for continuous operators.

Theorem

Every continuous operator T on a complete lattice (U,≤) has a least fixpoint,
and lfp(T) = sup({T i | i ≥ 0}), where T 0 = inf(U) and T i+1 = T (T i), for all
i ≥ 0.

Notation: T∞ = sup({T i | i ≥ 0}).

Finite convergence: T k = T k−1 for some k ⇒ T∞ = T k

A weaker form of Kleene’s theorem holds for all monotone operators
(transfinite sequence T i).

W. Nutt ODBS-FDBs 2017/2018 (37/47)

Foundations of Database Systems

Applying Fixpoint Theory

For a logic program P, the power set lattice (P (HB(P)),⊆) over the
Herbrand base HB(P) is a complete lattice.

We can associate with P an immediate consequence operator TP on
HB(P) such that TP(I) = {H(r) | r ∈ Ground(P), B(r) ⊆ I}
TP is monotonic (in fact, continuous)

Thus, TP has the least fixpoint lfp(TP). It coincides with T∞P and MM(P)

Theorem

Theorem. Given a datalog program P and a database instance I,

P (I) = lfp(TP(P,I)) = T∞P(P I)

Remark: Application of fixpoint theory is primarily of interest for infinite sets

W. Nutt ODBS-FDBs 2017/2018 (38/47)

Foundations of Database Systems

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on I is given by the set of facts
which can be proved from P and I.

Definition (Proof tree)

A proof tree for a fact A from I and P is a labeled finite tree T such that

each vertex of T is labeled by a fact

the root of T is labeled by A

each leaf of T is labeled by a fact in I

if a non-leaf of T is labeled with A1 and its children are labeled with
A2, . . . , An, then there exists a ground instance r of a rule in P such that
H(r) = A1 and B(r) = {A2, . . . , An}

W. Nutt ODBS-FDBs 2017/2018 (39/47)

Foundations of Database Systems

Example (Same Generation)

Let

P = {r1 : sgc(X, X) ← person(X)

r2 : sgc(X, Y) ← par(X, X1), sgc(X1, Y1), par(Y, Y1) }

where edb(P) = {person, par} and idb(P) = {sgc}

Consider I as follows:

I(person) = {〈ann〉, 〈bertrand〉, 〈charles〉, 〈dorothy〉,
〈evelyn〉, 〈fred〉, 〈george〉, 〈hilary〉}

I(par) = {〈dorothy, george〉, 〈evelyn, george〉, 〈bertrand, dorothy〉,
〈ann, dorothy〉, 〈hilary, ann〉, 〈charles, evelyn〉}.

W. Nutt ODBS-FDBs 2017/2018 (40/47)

Foundations of Database Systems

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from I and P :

r2 : par(ann, dorothy) par(charles, evelyn)

��������

A
A
A

XXXXXXXXXXX

sgc(ann, charles)

r2 : par(dorothy, george)

r1 : person(george)

#
#
#
#

J
J
J

sgc(george, george) par(evelyn, george)

��������

e
e
e

XXXXXXXXXXXX

sgc(dorothy, evelyn)

W. Nutt ODBS-FDBs 2017/2018 (41/47)

Foundations of Database Systems

Proof Tree Construction

There are different ways to construct a proof tree for A from P and I:

Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

Define S `P B to prove fact B from facts S
if B ∈ S or by a rule in P
Give S = I for granted

Top Down construction: From root to leaves

In Logic Programming view, consider program P(P, I).

This amounts to a set of logical sentences HP(P,I) of the form

∀x1 · · · ∀xm(R1(x̄1) ∨ ¬R2(x̄2) ∨ ¬R3(x̄3) ∨ · · · ∨ ¬Rn(x̄n))

Prove that A = R(t̄) is a logical consequence via resolution refutation,
that is, that HP(P,I) ∪ {¬A} is unsatisfiable.

W. Nutt ODBS-FDBs 2017/2018 (42/47)

Foundations of Database Systems

Datalog and SLD Resolution

Logic Programming uses SLD resolution

SLD: Selection Rule Driven Linear Resolution for Definite Clauses

For datalog programs P on I, resp. P(P, I), things are simpler than for
general logic programs (no function symbols, unification is easy)

Let SLD(P) be the set of ground atoms provable with SLD Resolution from P.

Theorem

For any datalog program P and database instance I,

SLD(P(P, I)) = P (I) = T∞P(P,I) = lfp(TP(P,I)) = MM(P(P, I))

W. Nutt ODBS-FDBs 2017/2018 (43/47)

Foundations of Database Systems

SLD Resolution – Termination

Notice: Selection rule for next rule/atom to be considered for resolution
might affect termination

Prolog’s strategy (leftmost atom/first rule) is problematic

Example:

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← child of(X, Z), descendent of(Z, Y).

← descendent of(karl, X).

W. Nutt ODBS-FDBs 2017/2018 (44/47)

Foundations of Database Systems

SLD Resolution – Termination/2

Example (cntd.):

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X,Z), child of(Z,Y).

← descendent of(karl, X).

W. Nutt ODBS-FDBs 2017/2018 (45/47)

Foundations of Database Systems

SLD Resolution – Termination /3

Example (cntd.):

child of(karl, franz).

child of(franz, frieda).

child of(frieda, pia).

descendent of(X, Y)← child of(X, Y).

descendent of(X, Y)← descendent of(X, Z),

descendent of(Z, Y).

← descendent of(karl, X).

W. Nutt ODBS-FDBs 2017/2018 (46/47)

Foundations of Database Systems

Exercise: Metro Reachability

Over the Metro database, consider the predicates reachableFromOne/3 and
reachableFromBoth/3, with the following meaning for stations a, b, and c:

1 reachableFromOne(a, b, c) holds if c is reachable from one of a or b;

2 reachableFromBoth(a, b, c) holds if c is reachable from both of a and b.

Write datalog rules that define these predicates.

W. Nutt ODBS-FDBs 2017/2018 (47/47)

	Foundations of Database Systems

