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How Are Algebra and Calculus Related?

We have seen several queries that could be expressed both in

Relational Calculus

Relational Algebra.

Are both languages the same? Or are they different?

How can we formally express hypotheses about their relationship?

How could we prove that they are the same? And how that they are different?
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Relationship between Algebra and Calculus

Theorem

For every Relational Algebra expression E one can compute in polynomial time
a first-order formula φ such that

E(I) = Qφ(I)

for all instances I

Proof.

Induction over the structure of algebra expressions. See Lemma 5.3.1 in
[AHV95].

If the algebra expression E contains comparisons in the selection and join
conditions, then φ will have comparisons

What about the converse statement?
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Safe Queries

Proposition

For every algebra expression E and every instance I, the set E(I) is finite

Proof.

How?

Definition

Let Qφ be a calculus query.
We say that Qφ is safe if Qφ(I) is finite for all instances I.

So, all algebra queries are safe. What about calculus queries?
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Negation and Safety

Consider

Q = {(i, n, f) | ¬Course(i, n, f)}

What is Q(Iuniv)?

Can we (automatically) tell safe queries from unsafe queries?
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Different Kinds of Satisfiability

Recall: Sentences are formulas where all variables are bound (closed formulas)

Definition

Let φ be a logical sentence. Then

φ is first-order satisfiable (or just satisfiable) if
there is a first order interpretation I such that I |= φ;

φ is finitely satisfiable if
there is a finite first order interpretation I such that I |= φ;

φ is database satisfiable if
there is a database instance I such that I |= φ.

Analogously, we define first-order validity, finite validity, and database validity.

What do you know about the decidability of these properties?
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Undecidabilty of Validity in First-order Logic

Theorem (Church (1) and Trakhtenbrot (2))

1 First-order validity of sentences is undecidable.

2 Finite validity of first-order sentences is undecidable.

Proof.

For both proofs, see the notes by Stephen G. Simpson from Penn State University.
Simpson’s proof uses formulas with one constant 0, two function symbols, and a binary
relation symbol. Note that, if we have equality, we can encode n-ary function symbols into
(n+ 1)-ary relation symbols, using functionality axioms for the new symbols. Moreover,
equality can be encoded into a new binary relation symbol, using congruence axioms. Thus,
the claim holds also for sentences without function symbols and without equality.

What does this imply for (un)satisfiability of sentences?
. . . and what for sentences valid in all database instances?
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Finite Satisfiability vs. Database Satisfiability

Lemma (Relativization)

For every first-order sentence φ we can construct (in polynomial time) a
first-order sentence φ̃ such that the following are equivalent:

φ has a finite model;

φ̃ has a model that is a database instance.

Proof (Sketch).

Idea: Encode the domain implicitly into φ̃, using a new relation symbol D.

Translate atoms as ˜R(s1, . . . , sn) := R(s1, . . . , sn) ∧D(s1) ∧ · · · ∧D(sn).

Translate conjunctions as ˜ψ1 ∧ ψ2 := ψ̃1 ∧ ψ̃2.

Translate existential quantification as ∃̃xψ := ∃x (D(x) ∧ ψ).
Translate negation as ¬̃ψ := D(x1) ∧ · · · ∧D(xn) ∧ ¬ψ,

where x1, . . . , xn are the free variables of ψ.

What does this tell us about the decidability of database satisfiability?
. . . and what about the decidability of safety?
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Decidability of Safety

Theorem

Safety of Relational Calculus queries is undecidable.

Proof.

Encode the finite satisfiability problem using the relativization lemma.
Then conclude the claim from Trakhtenbrot’s Theorem.

More precisely, for every sentence φ, we construct a formula ψφ(x) with free
variable x such that the query

Qφ = {x | ψφ(x)}

is safe if and only if φ is unsatisfiable.

Let R be a fresh relation symbol not occurring in our first-order sentences.
Then let ψφ(x) = ¬R(x) ∧ φ. Clearly, Qφ is unsatisfiable (and thus safe)
iff φ is unsatisfiable, and unsafe if φ is satisfiable.
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More Properties of Queries

Definition

Let Q, Q1, Q2 be relational calculus queries. We say that

Q is satisfiable iff there is an instance I such that Q(I) 6= ∅
(otherwise, Q is unsatisfiable)

Q1 and Q2 are equivalent (written Q1 ≡ Q2)
iff Q1(I) = Q2(I) for all instances I

Q1 is contained in Q2 (written Q1 v Q2)
iff Q1(I) ⊆ Q2(I) for all instances I

Can we conclude one property from another one?

If so, which from which, and how?

How can we check these properties?
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More Properties of Queries

Theorem

Satisfiability, equivalence, and containment are undecidable for RelCalc queries

Proof.

Undecidability of satisfiability follows from Trakhtenbrot’s theorem, using the
relativization lemma. The other two claims can then be shown by reduction.
Exercise!

Back to our original question:

Can all safe queries be expressed in relational algebra?
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What is the Role of the Domain in Query Answering?

Consider the query

Q = {x | Person(x) ∧ ∀ y Loves(x, y)}.

Is Q safe?

Consider the instance

Idb
pers = {Person(Fred), Person(Mary),

Loves(Fred, Fred), Loves(Fred, Mary) }.

What is Q(Idb
pers)?

Consider the finite interpretation Ifin
pers

where the domain is {Fred, Mary} and
where the interpretation of each relation is the same as in Idb

pers.

What is Q(Ifin
pers)?

Could Q possibly be defined in relational algebra?
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Domain Independence

A query where the answer depends

not only on the interpretation of the relations,

but also on the domain

is domain dependent.

All other queries are domain independent.

Can you give an example of a relational algebra query
that is domain dependent?

We make this more formal on the following slides
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Active Domain

When introducing the semantics of calculus queries, we defined the domain of
the interpretation I as

∆I = dom.

However, there are more options.

For an instance I and a query Q let

– adom(I) := the set of constants occurring in I, the active domain of I;

– adom(Q) := the set of constants occurring in Q, the active domain of Q;

– adom(Q, I) := adom(Q) ∪ adom(I), the active domain of Q and I.

A set d ⊆ dom is admissible for Q and I if adom(Q, I) ⊆ d.

Given an admissible d we define Id similarly as I, with the exception that

∆Id = d.
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Query Semantics

Let d be admissible for Q = {x̄ | φ} and I.

Then we define the answer of Q over I relative to d as

Qd(I) = {α(x̄) | Id, α |= φ}.

Intuitively, different semantics have different quantifier ranges.

The extreme cases are:

Natural semantics Qnat(I): unrestricted interpretation, that is d = dom

Active domain semantics Qadom(I): the range of quantifiers is the set of all
constants in Q and in I, that is d = adom(Q, I).
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Domain Independence

Definition

Let Q be a RelCalc query. We say that Q is domain independent if

Qd(I) = Qnat(I)

for all instances I and all domains d ⊆ dom that are admissible for Q and I.

Is domain independence decidable or not?
How can one prove this result?

What is the relationship between domain independent queries and relational
algebra queries?
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Equivalence Theorem of Relational Query Languages

The domain-independent relational calculus (DI-RelCalc) consists
of all domain-independent calculus queries

Theorem (Codd)

Relational Algebra and DI-RelCalc have the same expressivity

That is, for every relational algebra expression E, there is a DI-RelCalc query Q
such that E ≡ Q and vice versa.

Remark: The theorem only holds for relational algebra with the operator

singleton {d},
where d ∈ dom. Singleton models “x = d ” in queries, as in

{(x, y) | x = d ∧ P (y)}.
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Codd’s Theorem: Proof Idea

We have shown that every algebra query can be translated into RelCalc.
The converse statement follows from the next lemma.

Lemma

One can rewrite every RelCalc query Qφ to a Relational Algebra query Eφ
such that for every instance I we have

Qφ,adom(φ,I)(I) = Eφ(I).

Proof Sketch.

Consider Qφ = {x̄ | φ}. It is straightforward to define a unary algebra expression
Eadom such that for all instances I we have

Eadom(I) = adom(φ, I).

Then we translate every subformula ψ of φ into an expression Eψ such that

Eψ(I) = (Qψ)adom(φ,I).
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Codd’s Theorem: Proof Idea (cntd)

Proof Sketch (cntd).

We illustrate the translation with examples:

If ψ(y1, y2) = R(d1, y1, y2, d2), where R has the schema R(A1, A2, A3, A4),

then Eψ = πA2,A3(σA1=d1∧A4=d2(R)).

If ψ(y1, y2) = (y1 6= y2), where A1, A2 correspond to y1, y2,

then Eψ = σA1 6=A2(Eadom × Eadom).

If ψ(y1, y2, y3) = ψ′(y1, y2) ∨ ψ′′(y2, y3), where A1, A2, A3 correspond to y1, y2, y3,

then Eψ = (Eψ′ × Eadom) ∪ (Eadom × Eψ′′).

If ψ(y1, . . . , ym) = ¬ψ′(y1, . . . , ym),

then Eψ = (Eadom × · · · × Eadom) \ Eψ′ .

If ψ(y2, . . . ym) = ∃y1 ψ′(y1, . . . , ym), where A1, . . . , Am correspond to y1, . . . , ym,

then Eψ = πA2,...,Am(Eψ′).

We also need renaming, e.g., to give a name to the attribute of Eadom.
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Safe-Range Queries

Safe range queries are a syntactically defined fragment of the relational calculus
that contains only domain-independent queries

(and thus are also a fragment of DI-RelCalc)

One can show: Safe-Range RelCalc ≡ DI-RelCalc

Steps in defining safe-range queries:

a syntactic normal form of the queries

a mechanism for determining whether a variable is range restricted

Then a query is safe-range iff all its free variables are range-restricted.
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Safe-Range Normal Form (SRNF)

Equivalently rewrite query formula φ

Rename variables apart: Rename variables such that each variable x is
quantified at most once and has only free or only bound occurrences.

Eliminate ∀: Rewrite ∀xφ 7→ ¬∃x¬φ

Eliminate implications: Rewrite φ→ ψ 7→ ¬φ ∨ ψ
(and similarly for ↔)

Push negation down as far as possible: Use the rules

¬¬φ 7→ φ
¬(φ1 ∧ φ2) 7→ ¬φ1 ∨ ¬φ2)
¬(φ1 ∨ φ2) 7→ ¬φ1 ∧ ¬φ2)

Flatten ‘∃’s: No child of an ‘∃’ in the formula parse tree is an ‘∃’
(this step is not essential)

W. Nutt ODBS-FDBs 2017/2018 (20/29)



Foundations of Database Systems

Part 3: First-order Query Languages

Safe-Range Normal Form (2)

The result of rewriting a query Q is called SRNF(Q)

A query Q is in safe-range normal form if Q = SRNF(Q)

Examples:

Q1(th) = ∃ tl ∃ dir (Movie(tl, dir,’Depp’) ∧ Schedule(th,tl))

SRNF(Q1) = ∃ tl, dir (Movie(tl, dir,’Depp’) ∧ Schedule(th,tl))

Q2(dir) = ∀ th ∀ tl’ (Schedule(th,tl’) → ∃ tl ∃ act (Schedule(th,tl) ∧ Movie(tl, dir, act)))

SRNF(Q2) = ¬∃ th, tl’ (Schedule(th,tl’) ∧ ¬∃ tl, act (Schedule(th,tl) ∧ Movie(tl, dir, act)))
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Range Restriction

Three elements:

Syntactic condition on formulas in SRNF

Intuition: all possible values of a variable lie in the active domain

If a variable does not fulfill this, then the query is rejected
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Algorithm Range Restriction (rr)

Input: formula φ in SRNF

Output: subset of the free variables of φ or ⊥
(indicating that a quantified variable is not range restricted)

case φ of

R(t1, . . . , tn): rr(φ) := the set of variables from t1, . . . , tn
x = a, a = x: rr(φ) := {x}

φ1 ∧ φ2: rr(φ) := rr(φ1) ∪ rr(φ2)
φ1 ∧ x = y: if {x, y} ∩ rr(φ1) = ∅ then rr(φ) := rr(φ1)

else rr(φ) := rr(φ1) ∪ {x, y}
φ1 ∨ φ2: rr(φ) := rr(φ1) ∩ rr(φ2)
¬φ1: rr(φ) := ∅

∃x1, . . . , xnφ1: if {x1, . . . , xn} ⊆ rr(φ1) then rr(φ) := rr(φ1) \ {x1, . . . , xn}
else return ⊥

end case

Here, S ∪ ⊥ = ⊥ ∪ S = ⊥ and similarly for ∩, \
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Algorithm Range Restriction (rr)/2

To better understand the rationale behind the definition of the set rr(φ),
consider the following three formulas:

ψ1(x, y) = (P (x) ∧ ¬S(y)) ∨R(x, y)

ψ2(x, y) = P (x) ∨R(x, y)

ψ3(x, y) = (P (x) ∧ ¬S(y)) ∧R(x, y).

We have
rr(ψ1) = {x}, rr(ψ2) = {x}, rr(ψ3) = {x, y}.

Considering the three formulas φi(x) = ∃y (ψi(x, y)), where i = 1, 2, 3,
we see that φ1 and φ2 are not range restricted, while φ3 is.

However, while φ1 is domain-dependent, φ2 is not.

Hence, the range-restricted formulas are a proper subset of the
domain-independent ones.
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Safe Range Theorem

Definition

Let φ be a formula and φ̃ be its safe range normal form.

Then φ is a safe range formula if the range restriction algorithm rr
returns the set of free variables of φ̃.

A RelCalc query is a safe range query if it is defined by a safe range
formula.

Theorem (Safe Range Theorem)

All safe range queries are domain independent.

For every domain independent query there is
an equivalent safe range query.

The proof is very technical. We refer for it to the book [AHV95].
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What Has This To Do With SQL?

We define the set of nice SQL queries as consisting of the queries constructed

with SELECT, FROM and WHERE clauses
plus UNION of subqueries
plus nesting with EXISTS and IN

with a DISTINCT in the SELECT clause

where the SELECT clause contains only attributes

with atomic conditions in WHERE clauses being equalities and comparisons,
involving only constants and attributes

with conditions in WHERE clauses being boolean combinations of atomic,
EXISTS, and IN conditions

We call the set of all those queries Nice SQL (short NSQL)
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Nice SQL and Relational Query Languages

Theorem

Relational algebra, DI-RelCalc, and NSQL have the same expressivity

This should not be surprising because

NSQL combines the query constructs that have a correspondence in FOL

We dropped, among others,

arithmetic (“+”, “−”, “∗”),
string functions, string matching,
null values, outer joins,
aggregation
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Nice SQL: Exercise

Express the following queries over our university schema in NSQL

Which are the names of students that have passed an exam in CS?

What are the names of the courses for which student Egger
has failed an exam?

Which students have failed an exam for the same course at least twice?

Which students (given by their id) have never failed an exam in CS?

Which students (given by their id) have passed the exams
for all courses in CS?
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Looking Back . . .

We have reviewed three formalisms for expressing queries

Relational Algebra

Relational Calculus (with its domain-independent fragment)

Nice SQL

and seen that they have the same expressivity

However, crucial properties ((un)satisfiability, equivalence, containment)
are undecidable

Hence, automatic analysis of such queries is impossible

Can we do some analysis if queries are simpler?
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