
ODBS: Foundations of Databases A.Y. 2017/18

Sample Solutions of Coursework Werner Nutt

4. Containment and Minimization of
Conjunctive Queries

These are sample solutions to some of the exercises that were given as coursework. They are
not intended as models but show each one way to approach the problem set in the exercise.

2. Containment of Selfjoin-free Conjunctive Queries with Built-Ins

We start with a characterization of containment of selfjoin-free queries with built-ins over ratio-
nal numbers. In contrast with containment of general conjunctive queries with built-ins, such a
characterization is possible when selfjoin-free queries are considered.

Theorem 1. Let Q(~x):−L,M and Q′(~x):−L′,M ′ be selfjoin-free conjunctive queries.
Then the following are equivalent:

• Q v Q′

• Q is unsatisfiable or there exists a homomorphism δ from Q′ to Q.

Recall that for queries with comparisons, a mapping δ : Terms (Q′) → Terms (Q) is a query
homomorphism if

• δ(c) = c for every constant c;

• δ(x) = x for every distinguished variable x of Q′;

• δ(L′) ⊆ L;

• M |= δ(M ′).

Proof. (⇐) Follows from the Homomorphism Theorem for queries with comparisons.
(⇒) Suppose Q v Q′, and Q is satisfiable. We construct a mapping δ : Terms (Q′) →
Terms (Q) and show that it is a query homomorphism from Q′ to Q.
Note that, without loss of generality, we may assume that M does not entail equality between
different terms. Hence over the domain of rational numbers, we may assume that there always
exists an injective assignment satisfying M .
First, Q is satisfiable, so there exists an injective assignment α for Terms (Q) such that α |= M
and α(c) = c, for each constant c ∈ Terms (Q).
Define database instance I = α(L). Then we have that α(~x) ∈ Q(I), and from Q v Q′ it
follows that α(~x) ∈ Q′(I).

Consequently, we obtain a mapping γ such that γ(~x) = α(~x), γ(L′) ⊆ I, and γ |= M ′.
Moreover, γ maps constants to themselves.
Now, let δ = α−1 ◦ γ. Then δ is a mapping from Terms (Q′) to Terms (Q). It remains to prove
that δ is a query homomorphism from Q′ to Q.

• Let c ∈ Terms (Q′) be a constant. Then δ(c) = (α−1 ◦ γ)(c) = α−1(γ(c)) = α−1(c) = c.

• Let x be a distinguished variable of Q′. Then δ(x) = (α−1 ◦ γ)(x) = α−1(γ(x)) =
α−1(α(x)) = x.

• δ(L′) = (α−1 ◦ γ)(L′) = α−1(γ(L′)) ⊆ α−1(I) = L. Hence, δ is a relational homomor-
phism.

• Let α2 |= M be an assignment (not necessarily injective). We show that α2 |= δ(M ′).

We can repeat the argument above with α, I and γ, to obtain a database instance I2 and a
mapping γ2 from L′ to I2 such that γ2 |= M ′.

Then, we have that α2 ◦ δ is a mapping from L′ to I2 = α2(L).
Since there are no selfjoins in L and L′, there exists a unique mapping from L′ to I2.
Therefore α2 ◦ δ = γ2.
It follows that α2 ◦ δ |= M ′. We are working under the Standard Name Assumption and
over the domain of rational numbers, so it holds that |= (α2 ◦ δ)(M ′), which is equivalent
to |= α2(δ(M

′)). Finally, we obtain that α2 |= δ(M ′).

Having proved the characterization of containment of selfjoin-free conjunctive queries, we are
ready to devise a polynomial time algorithm that given two queries Q:−L,M and Q′:−L′,M ′

decides whether Q v Q′:

1. If Q is unsatisfiable, return true.

2. Find a relational homomorphism δ from L′ to L. If it does not exist, return false.

3. Check whether M |= δ(M ′), that is,
for each C ∈ δ(M ′), check whether M ∪{¬C} is unsatisfiable. If not, return false.

4. Return true.

The correctness of the algorithm follows from Theorem 1.
From the previous coursework and Exercise 2, Satisfiability of Comparisons, it follows that
step 2 and steps 1 and 3 can be done in polynomial time. Hence, this is a polynomial time
algorithm.

4. Minimization of Conjunctive Queries

Recall that relational conjunctive queries (RCQs) are conjunctive queries without equalities
and inequalities. Recall as well that a conjunctive queryQ0 is a subquery of another conjunctive
query Q if Q0 can be obtained from Q by dropping some of the atoms in the body of Q.
Prove the following two propositions that provide the underpinnings for the algorithm of con-
junctive query minimization.

Proposition 1. Let Q be a RCQ with n atoms and Q′ be an equivalent RCQ with m atoms
where m < n. Then there exists a subquery Q0 of Q such that Q0 has at most m atoms in the
body and Q0 is equivalent to Q.

Sample solution by Evgeny Kharlamov.

Proof. Given that Q is equivalent to Q′, the containments Q′ v Q and Q v Q′ hold. Suppose
Q and Q′ have the form Q(x̄) :– L and Q′(x̄) :– L′, respectively. By the Homomorphism The-
orem, there exist substitutions δ : Terms (Q) → Terms (Q′) and δ′ : Terms (Q′) → Terms (Q),
such that δ′ is a homomorphism from Q′ to Q and δ is a homomorphism from Q to Q′.
Let us consider the composition γ = δ′ ◦ δ of these homomorphisms. Let L0 := γ̃L be the set
of atoms in the range of γ. For each substitution δ, δ′, and γ we define corresponding mappings
δ̃, δ̃′, and γ̃ that map atoms to atoms. The function γ̃ looks as follows:

γ̃ : L
δ̃ // L′

δ̃′ // L0 .

Obviously, L0 consists of at most |L′| = m atoms. Observe that by construction γx̄ = x̄
and γc = c for any constant c in Terms (Q). Hence, every variable in x̄ occurs in L0 and
consequently Q0(x̄) :– L0 defines a query. Note that for the body of the query Q0 the inclusion
γ̃L ⊆ L0 hold. We constructed the query Q0 in such a way that it is a subquery of Q with at
most m atoms in the body. Now we will show that Q0 is equivalent to Q. Observe that we
constructed Q0 in such a way that γ maps Terms (Q) to Terms (Q0) and satisfies the conditions
from the definition of a homomorphism. Hence, γ is a homomorphism from Q to Q0 and
Q0 v Q. The containment Q v Q0 holds, since there exists a homomorphism from Q0 to Q,
which is simply the identity function on Terms (Q0). Hence, Q0 ≡ Q and Q0 has at most m
atoms in the body.

Proposition 2. Let Q and Q′ be two equivalent minimal RCQs. Then Q and Q′ are identical
up to renaming of variables.

Sample solution by Evgeny Kharlamov.

Proof. Given the equivalence of Q and Q′, there exist two homomorphisms δ from Q to Q′ and
δ′ from Q′ to Q, which are mappings

δ : Terms (Q)→ Terms (Q′) and δ′ : Terms (Q′)→ Terms (Q).

Let us consider the composition γ = δ′ ◦δ of these homomorphisms. Using the same reasoning
as in Proposition 1, one can show that γ is a homomorphism from Q to its subquery Q0 and Q
is equivalent to Q0. Using the minimality of Q we obtain that Q0 coincides with Q. Hence, the
composition γ̃ = δ̃′ ◦ δ̃ of the form

γ̃ : L δ̃ // L′ δ̃′ // L

is surjective. Any surjective mapping of a finite set to itself is injective. The sets L is finite,
hence, the composition γ̃ is injective, so it is bijective. From this we conclude that δ̃, being

the first component of γ̃, is an injective mapping from L to L′. In a similar way one can show
that the composition γ̃′ = δ̃ ◦ δ̃′ is bijective and its first component, namely δ̃′, is an injective
mapping from L′ to L. We obtained that δ̃ and δ̃′ are injective mappings from the finite set L
to the finite set L′ and back, respectively. One consequence from this fact is that the sets L and
L′ have the same cardinality, namely |L| = |L′|, and the queries are over the same relational
schemas, i.e. the sets of relational names occur in the bodies ofQ andQ′ are the same. Another
consequence is that δ̃ and δ̃′ are surjective, moreover, they are bijective.
Observe that if the extension of a substitution (to sets of atoms) is a surjective mapping from
one set of atoms to another, then the substitution itself is a surjective mapping from the set of
terms occurring in one set of atoms to the set of terms occurring in another. The extension
γ̃ = δ̃′ ◦ δ̃ is surjective, hence, the substitution γ = δ′ ◦ δ is a surjective mapping from the set
of terms Terms (Q) to itself. Similarly, the substitution γ′ = δ ◦ δ′ is a surjective mapping from
the set of terms Terms (Q′) to itself. From the surjectivity of γ and γ′, using the same reasons
as we used in the previous paragraph, we conclude that γ and γ′ are bijective, their components
δ and δ′ are also bijective and |Terms (Q)| = |Terms (Q′)|.
Observe that the homomorphism δ is a bijective mapping from Terms (Q) to Terms (Q′), such
that it is the identity mapping on the set of constants and distinguished variables of Q. Hence
the inequality |Vars (Q′)| ≤ |Vars (Q)| holds (in general, δ can map some non-distinguished
variables of Q to constants of Q′ that do not appear in Q). Analogously, bijectivity of the ho-
momorphism δ′ gives us the inequality |Vars (Q)| ≤ |Vars (Q′)|. Hence, the sets of variables
in the queries Q and Q′ have the same cardinality, namely |Vars (Q′)| = |Vars (Q)|. We ob-
tained that the equivalent queries Q and Q′ are over the same relational schemas, have the same
active domains, i.e., the same constants occur in the queries, and the same number of non-
distinguished variables. Hence, they are identical up to renaming of variables. In particular, the
homomorphisms δ and δ′ are such renamings.

