
ODBS: Foundations of Databases A.Y. 2017/18

Sample Solutions of Coursework Werner Nutt

3. Evaluation and Containment of Conjunctive Queries

These are sample solutions to some of the exercises that were given as coursework. They are
not intended as models but show each one way to approach the problem set in the exercise.

These sample solutions have been authored by Elena Botoeva, for the edition of this course in
2013/14.

1. Evaluation of Special Types of Conjunctive Graph Queries

1. The k-th circle query Ck(x) :− edge(x, z1), edge(z1, z2), . . . , edge(zk−1, x).

The algorithm:

R := edge
for i := 1 to k − 1 do

S := R ./R.2=edge.1 edge
R := πS.1,S.3(S)

return πR.1(σR.1=R.2(R))

Let n = |edgeI|. The running time:

• line 1: R is of size n.
• line 3 (for i = 1): the join can be computed by sorting R on the second component

and edge on the first component: O(n log(n)). The resulting relation S is of size
O(n2).
• line 4 (for i = 1): the projection requires duplicate elimination, it can be done by

sorting S on the first component: O(n2 log(n2)) = O(n2 log(n)). The resulting
relation R is of size O(n2).
• line 3 (for i = 2, . . .): now, R is of size O(n2), so the running time is O(n2 log(n)).

The resulting relation S is of size O(n3).
• line 4 (for i = 2, . . .): now, S is of size O(n3), so the running time is O(n3 log(n)).

The resulting relation R is of size O(n2).
• line 5: selection can be done in liner time in the size ofR, soO(n2), then projection

requires sorting, so O(n2 log(n)).
• the total running time is O(kn3 log(n)).

2. The k-th star query Sk(x) :− edge(x, z1), edge(x, z2), . . . , edge(x, zk).

Note that Sk(x) is equivalent to the query S ′k(x) :− edge(x, z1).

The algorithm:

return πedge.1(edge)

The running time is O(n log(n)).

3. The k-th spider-web query Wk(x) :− edge(x, z1), edge(x, z2), . . . , edge(x, zk),
edge(z1, z2), edge(z2, z3), . . . , edge(zk, z1).

The algorithm:

R := edge, Chord := edge
S := R ./R.2=Chord .1 Chord //S is a ternary relation
T := S ./S.1=R.1,S.3=R.2 R //T is a ternary relation
for i := 1 to k − 1 do

Q := T ./T.3=Chord .1 Chord //Q is a quaternary relation
S := πQ.1,Q.2,Q.4(Q) //S is a ternary relation
T := S ./S.1=R.1,S.3=R.2 R //T is a ternary relation

return πT.1(σT.2=T.3(T))

The running time: the principal difference with the analysis for circle queries is that here
we have a quaternary relation Q of size O(n4). So line 6 is the most expensive one and
costs O(n4 log(n)). The total cost is O(kn4 log(n)).

4. The k-th clique query Clk() :− edge(z1, z2), edge(z1, z3), . . . , edge(z1, zk),
edge(z2, z1), edge(z2, z3), . . . , edge(z2, zk),
. . .
edge(zk, z1), edge(zk, z2), . . . , edge(zk, zk−1).

The query Clk() evaluates to true over I if and only if the graph defined by edgeI contains
a clique of size smaller or equal k. The latter problem is known to be NP-complete. It
means that the most efficient (known) algorithm for evaluating Clk runs in exponential
time in the worst case scenario. The following is a brute-force algorithm:

S := edgeI ∩ (edgeI)−

V := πS.1(S)
for each tuple (x1, . . . , xk) ∈ V k

check whether x1, . . . , xk form a clique, i.e.,
(xi, xj) ∈ S, for all i = 1, . . . , k − 1, j = i+ 1, . . . , k and xi 6= xj

if they do, return true
return false

The running time:

• line 2: V is of size O(n).
• line 3: V k is of size O(nk).
• line 4: checking whether x1, . . . , xk form a clique can be done in O(k2).
• the total cost is O(nkk2).

2. Evaluation of Conjunctive Queries with Unary Relation Symbols

1. LetQ() :− r11(x1), . . . , r
k1
1 (x1), . . . , r

1
n(xn), . . . , r

kn
n (xn), s1(a1), . . . , sm(am) be a Boolean

query with unary relation symbols, where x1, . . . , xn are variables and a1, . . . , am are
constants.

The polynomial time algorithm for checking whether I |= Q:

for i = 1 to m do
if ai /∈ sIi , return false

for i = 1 to n do
evaluate Boolean query Q′() :− r1i (xi), . . . , r

ki
i (xi), i.e.,

A = (r1i)
I ∩ · · · ∩ (rkii)

I

if Q′evaluates to false, i.e., A = ∅, return false
return true

2. Evaluation of unary conjunctive queries with built-in predicates is NP-hard.

We show it by reduction from the problem of 3-colorability of undirected graphs. Let
G = (V,E) be an undirected graph. We construct a database instance I and a Boolean
query Q such that

G is 3-colorable iff I |= Q

First, we set I = {color(r), color(g), color(b)}. Second, assume V = {v1, . . . , vn}. For
each vertex vi, 1 ≤ i ≤ n, we introduce a variable xi. So, we set Q() :−L,M , where

L = {color(x1), . . . , color(xn)}
M = {xi 6= xj | (vi, vj) ∈ E}

Now, we prove that G is 3-colorable iff I |= Q.

(⇒) AssumeG is 3-colorable. It follows that there exists an assignment c : V → {r, g, b}
such that whenever (vi, vj) ∈ E it holds that c(vi) 6= c(vj). We can use this assignment
to satisfy Q. More precisely, let α(xi) = c(vi), then it is easy to see that α(L) ⊆ I and
α |=M .

(⇐) Assume Q evaluates to true over I. We can invert the argument above to show that
G is 3-colorable.

