
ODBS: Foundations of Databases A.Y. 2017/18

Sample Solutions of Coursework Werner Nutt

2. Positive and Conjunctive Queries

These are sample solutions to some of the exercises that were given as coursework. They are
not intended as models but show each one way to approach the problem set in the exercise.

2. Unions of Conjunctive Queries

Show that adding union to simple conjunctive queries strictly increases the expressivity of the
resulting query language. (Recall from the previous exercise that simple conjunctive queries
have neither equality nor disequality atoms.)

Hint 1: Consider the query defined by the two rules

Q(x) :– p(x)

Q(x) :– r(x)

and show that no query defined by a single rule is equivalent to it.

Hint 2: Assume there is an equivalent simple conjunctive query. Then consider several databases
distinguished by the atoms occurring in them.

Sample solution.

Let us recall several definitions. We view a database instance as a set of ground atoms and
a disjunctive query as a set of conjunctive queries. We define the answer set of a disjunctive
query as the union of the answer sets of all conjunctive queries in it.
The following proposition gives a solution for the exercise.

Proposition 1. There is a disjunctive query that is not equivalent to any conjunctive query.

Proof. Consider the query Q′ given by the following two rules:

Q′(x) :– p(x)

Q′(x) :– r(x).

Assume there is a rule-based conjunctive query Q that is equivalent to Q′. The query Q is of
the form

Q() :− R1(~x1), ..., Rn(~xn). (1)

Let us consider the two database instances I1 = {p(a)} and I2 = {r(a)}. By our assumption
Q′ ≡ Q. Therefore, Q′(Ii) = Q(Ii), for i ∈ { 1, 2 }.
For the first database instance, Q′(I1) = {〈a〉} = Q(I1). Therefore, Q’s body can only contain
atoms of the relation p. Similarly, for the second database instance we have Q′(I2) = {〈a〉} =
Q(I2). Therefore, Q’s body can only contain atoms of the relation r. Since p and r are distinct,
we have obtained a contradiction.

3. Classes of Conjunctive Queries

We view queries as functions that map database instances to relation instances. Consider the
following classes of conjunctive queries, which are distinguished by the form of the rules by
which they can be defined:

CQ: rules without equality “=” and disequality “6=” atoms (“simple” conjunctive queries);

CQ=: rules that may have equality atoms, but no disequality atoms;

CQrep: rules that may repeat variables in the head, but do not have equality and disequality
atoms;

CQconst: rules that may have constants in the head, but do not have equality and disequality
atoms;

CQrep,const: rules that may repeat variables and may have constants in the head, but do not have
equality and disequality atoms.

Determine which inclusions hold between these classes and which not:

• To show that class C1 is included in class C2 (i.e., C1 ⊆ C2), indicate how any query in
C1 can be equivalently expressed by a query in C2.

• To show that C1 is not included in C2 (i.e., C1 * C2), identify first a property P2 such
that all queries in C2 have property P2, and then exhibit a query in C1 that does not
property P2.

Clearly, some inclusions are obvious. Note also that you can derive some other inclusions
exploiting the fact that set inclusion is transitive.

Sample solution.

Claim. The following inclusions hold:

• CQ ⊂ CQrep, CQ ⊂ CQconst,

• CQrep ⊂ CQrep,const, CQconst ⊂ CQrep,const,

• CQrep ⊂ CQ=.

Moreover, all inclusions hold that follow by transitivity from the inclusions above. However, no
other inclusions hold. In particular, all the above inclusions are strict.

There is one inclusion that is not obvious is CQrep ⊂ CQ=.

Lemma 1. Let Q(x̄) :– L,M be a conjunctive query with (possibly) equality atoms that has a
repetition of the variable x1 in the head. Then Q is equivalent to a query

Q′(x̄′) :– L,L′,M,M ′, x1 = x′1

that has one repeated variable occurrence less than Q.

Proof. Without loss of generality assume that x̄ = (x1, x1, x3, . . . , xk), where some variables
among x3, . . . , xk are possibly identical. Let x′1 be a fresh variable. Define the vector of
variables x̄′ = (x1, x

′
1, x3, . . . , xk). Moreover, define the set of atoms L′ := [x1/x

′
1]L and

the set of equalities M ′ := [x1/x
′
1]M , that is, L′, M ′ are obtained from L, M by replacing x1

with the fresh variable x′1. Moreover, define Q′ as Q′(x̄′) :– L,L′,M,M ′, x1 = x′1. Clearly, Q′

has one repetition in the head less than Q.
Now, let I be an instance, α be an assignment for the variables in Q, and suppose that I, α |= L
and α |= M . We extend α to an assignment α′ of the variables in Q′ by also mapping x′1 to
α(x1). Then I, α′ |= L′ and α′ |= M ′, x1 = x′1. This shows that Q(I) ⊆ Q′(I). Conversely,
let α′ be an assignment such that I, α′ |= L,L′ and α′ |= M,M ′, x1 = x′1. Then I, α′ |= L
and α′ |= M , hence α′(x̄) ∈ Q(I). Since α′(x′1) = α′(x1), we have α′(x̄′) = α′(x̄), and thus
Q′(I) ⊆ Q(I). Since I was arbitrary, this shows that Q and Q′ are equivalent.

Now, it is straightforward to show by induction that all repeated occurrences of a head variable
can be expressed by equalities between distinct variables. It remains to show that no other
inclusions hold.
To prove that claim it remains to show that all inclusions are strict and that for any pair of classes
C, C ′ that are not related by an inclusion there exist queries Q ∈ C \C ′ and Q′ ∈ C ′ \C. The
following trivial lemma will be useful for our proof, since it allows us to exploit inclusions to
conclude non-inclusions from other non-inclusions.

Lemma 2. Let A, C, C ′, B be sets such that A ⊆ C, C ′ ⊆ B. Then

C ′ * C implies C ′ * A and B * C.

As a consequence, we only have to prove some crucial non-inclusions, from which others will
follow. Of course, we get the best leverage of the lemma if we prove non-inclusions “C ′ * C”
for sets C ′, C, where C ′ has many supersets and C has many subsets.
One readily checks that it is sufficient to show the following non-inclusions:

• CQrep * CQconst

• CQconst * CQ=

• CQ= * CQrep,const.

Our non-inclusion proofs will all follow the same pattern. We identify a property P for which
we show that all queries in C satisfy P . Then we identify a query in C ′ that does not have this
property.

Proposition 3. For every binary query Q ∈ CQconst one of the two following statements holds:

• |Q(I)| ≤ 1 for all instances I;

• there exist constants a, b with a 6= b and an instance I such that (a, b) ∈ Q(I).

Corollary 4. CQrep * CQconst.

Proof. The query Q(x, x) :– r(x) is in CQrep, but does not have the properties mentioned in
Proposition 3.

Proposition 5. For every query Q ∈ CQ= and every instance I we have that a constant c
occurs in Q(I) only if c occurs in I.

Corollary 6. CQconst * CQ=.

Proof. The query Q(a) :– r(b) is in CQconst, but does not have the above property.

Proposition 7. All queries in CQrep,const are satisfiable.

Corollary 8. CQ= * CQrep,const.

Proof. The query Q() :– r(a), a=b is in CQ= and is not satisfiable. Because of Proposition 7,
the query Q is not in CQrep,const.

This proves the claim.

