
ODBS: Foundations of Databases A.Y. 2017/18

Sample Solutions of Coursework Werner Nutt

1. Satisfiability, Safety, and Containment

These are sample solutions to some of the exercises that were given as coursework. They are
not intended as models but show each one way to approach the problem set in the exercise.

1. Finite vs. Infinite Satisfiability

We consider first-order sentences (= closed formulas), possibly with constants and equality, but
without function symbols. A sentence is finitely satisfiable if it is satisfied by some interpreta-
tion with a finite domain. It is infinitely satisfiable if it is satisfied by some interpretation with
an infinite domain.
For each of the two cases below, write down a sentence φ, ψ, respectively, with the required
property:

1. φ is finitely satisfiable, but not infinitely satisfiable;

2. ψ is infinitely satisfiable, but not finitely satisfiable.

Explain why your formulas have the required property.

Sample solution (by Ario Santoso and Nhung Ngo).

The following formula is finitely satisfiable, but not infinitely satisfiable:

Φ1 = ∀x, y (x = y).

Clearly, Φ1 is satisfied by an interpretation if and only if the domain of the interpretation has
exactly one element.

The following formula is infinitely satisfiable but not finitely satisfiable:

Φ2 = (∀x∃y LessThan(x, y)) ∧ (¬∃x LessThan(x, x)) ∧
(∀x, y, z LessThan(x, y) ∧ LessThan(y, z)→ LessThan(x, z)).

We have to show that Φ2 is infinitely satisfiable but not finitely satisfiable. The interpretation I
with the domain N where

(x, y) ∈ LessThanI iff x < y,

is obviously an interpretation with infinite domain which satisfies Φ2. Hence Φ2 is infinitely
satisfiable. It remains to show that Φ2 is not finitely satisfiable.

To show that Φ is not finitely satisfiable, suppose by contradiction there exists an interpretation
J with a finite domain ∆ = { d0, . . . , dn }, which satisfies Φ2. Hence, because of

(∀x∃y LessThan(x, y)) (1)

and
(¬∃x LessThan(x, x)), (2)

we have that for all di ∈ ∆ there exists dj ∈ ∆ such that (di, dj) ∈ LessThanJ and di 6= dj ,
where 0 ≤ i ≤ j ≤ n. By the transitivity imposed by

(∀x, y, z LessThan(x, y) ∧ LessThan(y, z)→ LessThan(x, z)) (3)

we have that if (di, dj) ∈ LessThanJ and (dj, dk) ∈ LessThanJ then (di, dk) ∈ LessThanJ ,
where 0 ≤ i ≤ j ≤ k ≤ n. Now let’s construct the interpretation J iteratively from d0. Because
of (1) and (2), we need to have d ∈ ∆ such that (d0, d) ∈ LessThanJ and d 6= d0. W.l.o.g.
suppose d = d1. Again by (1) and (2), we need to have d′ ∈ ∆ such that (d1, d

′) ∈ LessThanJ

and d′ 6= d1. Because of (3) and (1) we can’t also have d′ = d0. W.l.o.g. suppose d′ =
d2. Because of the transitivity imposed by (3), we must also have (d0, d2) ∈ LessThanJ.
Repeating the same argument, it is easy to see that at some point we will reach dn and we
cannot find d′′ ∈ ∆ such that (dn, d

′′) ∈ LessThanJ because the domain is finite. That is, it
requires an interpretation with infinite domain. Hence we cannot have an interpretation J with
a finite domain that satisfies Φ2. Hence we have a contradiction. Therefore it’s impossible for
Φ2 to have a finite model.

2. Finite vs. Database Satisfiability

We consider now first-order sentences that may have constants, but no function symbols and
no equality or disequality atoms. We say that a sentence is database satisfiable if it is satisfied
by an interpretation that is a database instance. (Note that database and finite satisfiability are
not necessarily the same since every database instance has the domain dom, which is infinite.)
Do there exist sentences φ, ψ such that

1. φ is finitely satisfiable, but not database satisfiable;

2. ψ is database satisfiable, but not finitely satisfiable?

For each of the two cases, if there exists such a formula, write one down. If there does not exist
such a formula, write down a proof for your claim. (That is, explain why a sentence is finitely
satisfiable if it is database satisfiable, or why it is database satisfiable if it is finitely satisfiable.)

Sample solution.

The answer to the first question is positive.

Proposition 1. There is a sentence that is finitely satisfiable, but not database satisfiable.

Proof. Consider the sentence φ = ∀xP (x). Clearly, there exists a finite interpretation where all
elements of the domain are in the relation P . However, the sentence is not database satisfiable,
because the domain of every database interpretation is infinite, while the number of domain
elements occurring in any relation is finite.

The answer to the second question is negative.

Theorem 2. Every database-satisfiable sentence is finitely satisfiable.

To prove the theorem, we need some auxiliary results. For the proof we want to show that
for every first-order sentence ψ and every instance I satisfying ψ we can construct a finite
interpretation I0 that satisfies ψ. The idea is to leave the interpretation of the relation symbols
unchanged, but to keep only one constant that occurs neither in a relation instance nor in the
query. Since the formulas in question do not contain equality or other built-in predicates, we
cannot distinguish between the domain elements that do not occur in any relation or the query.
(If we had built-in atoms, then we could achieve the same effect by keeping as many constants
outside the active domain as can be distinguished by the sentence and its subformulas. One can
show that it would be sufficient to keep as many such constants as there are variables in the
sentence.)
Let D be the active domain of I and ψ, and let d0 be a fresh constant, not occurring in I or ψ.
The constant d0 is intended to represent all elements outside of D. Define ∆0 := D ∪ { d0 }.
Let the domain of I0 be ∆0 and let the interpretation of each relation symbol be the same as
in I. We want to show that I0 satisfies ψ.
Without loss of generality we can assume that ψ is constructed using only the operators ∧, ¬,
and existential quantification. (Note that this assumption simplifies the induction step in our
proof, since each operator constitutes one case to be considered.)
Let γ : dom→ ∆0 be the function that maps every constant d ∈ D to itself and every constant
d ∈ dom \D to d0. Then, for every assignment α, the assignment γ ◦ α, the composition of γ
and α, maps a variable x to α(x) if α(x) ∈ D, and it maps x to d0 if α(x) is outside D.
As a preparation for our proof we show the following lemma, which says that for checking
whether a formula is satisfied by an instance it is sufficient to consider assignments that map
variables to constants in the active domain of the instance and the formula and possibly one
distinguished constants not in the active domain.

Lemma 3. For every formula ψ′ with adom(ψ′) ⊆ D and every assignment α : var→ dom we
have that

I, α |= ψ′ if and only if I, (γ ◦ α) |= ψ′.

Proof. The claim is shown by induction over the structure of ψ′. Clearly, the claim holds for
atoms. It can also be shown in a straightforward way for conjunctive formulas. Let us next
have a look at negated formulas. Suppose I, α |= ¬ψ′′. This holds if and only if I, α 6|= ψ′′. By
induction, this holds if and only if I, (γ ◦ α) 6|= ψ′′, which is equivalent to I, (γ ◦ α) |= ¬ψ′′.
Let us finally have a look at existentially quantified subformulas. Suppose I, α |= ∃xψ′′. Then
there is an element d ∈ dom such that I, α[x/d] |= ψ′′. From the induction hypothesis we
conclude that I, γ ◦ (α[x/d]) |= ψ′′. Noting that γ ◦ (α[x/d]) = (γ ◦ α)[x/γ(d)], we infer that
I, (γ ◦α)[x/γ(d)] |= ψ′′ and thus that I, (γ ◦α) |= ∃xψ′′. Conversely, suppose that I, (γ ◦α) |=
∃xψ′′. Then there is an element d ∈ dom such that I, (γ ◦ α)[x/d] |= ψ′′. Again, since
γ ◦ ((γ ◦α)[x/d]) = (γ ◦α)[x/γ(d)], the induction hypothesis implies that I, (γ ◦α)[x/γ(d)] |=
ψ′′. Since (γ ◦ α)[x/γ(d)] = γ ◦ (α[x/d]), we conclude by the induction hypothesis that
I, α[x/d] |= ψ′′ and hence that I, α |= ∃xψ′′.

We now show a lemma that together with the preceding lemma implies our theorem.

Lemma 4. For every formula ψ′ with adom(ψ′) ⊆ D and every assignment α : var → D0 it
holds that

I, α |= ψ′ if and only if I0, α |= ψ′.

Proof. Again, the claim is shown by induction over the structure of ψ′. By definition of I0, the
claim holds if ψ′ is an atom.
Suppose now that ψ′ is a conjunction, that is ψ′ = ψ′

1∧ψ′
2. Then for every assignment α : var→

D0 we have

I, α |= ψ′
1 ∧ ψ′

2 iff I, α |= ψ′
1 and I, α |= ψ′

2

iff I0, α |= ψ′
1 and I0, α |= ψ′

2

iff I0, α |= ψ′
1 ∧ ψ′

2.

Suppose next that ψ′ is a negated formula, that is ψ′ = ¬ψ′′. Then for every assignment
α : var→ D0 we have

I, α |= ¬ψ′ iff I, α 6|= ψ′′

iff I0, α 6|= ψ′′

iff I0, α |= ¬ψ′′.

Suppose finally that ψ′ is an existentially quantified formula, that is ψ′ = ∃xψ′′. Let α : var→
D0 be an assignment. We note in passing that α = γ ◦ α.
Let I, α |= ∃xψ′′. Then there exists an element d ∈ dom such that α[x/d], I |= ψ′′.
Using Lemma 3, we conclude that I, γ ◦ (α[x/d]) |= ψ′′. Since α = γ ◦ α, we have
γ ◦ (α[x/d]) = α[x/γ(d)] and thus I, α[x/γ(d)] |= ψ′′. By the induction hypothesis it fol-
lows that I0, α[x/γ(d)] |= ψ′′ and hence I0, α |= ∃xψ′′.
Conversely, let I0, α |= ∃xψ′′. Then there exists a d′ ∈ D0 such that I0, α[x/d′] |= ψ′′. By
our induction hypothesis, it follows that I, α[x/d′] |= ψ′′, which implies that I, α |= ∃xψ′′.

This now proves the theorem: For an arbitrary sentence ψ satisfied by some instance I we have
constructed a finite interpretation I0 such that I0 satisfies ψ, too.

3. Positive Queries

We consider formulas without built-in predicates such as “=, ≤, or 6=.” A first-order logic
formula is positive if it contains only the logical symbols “∧”, “∨”, and “∃”. A relational
calculus query Qφ is positive if the defining formula φ is positive.

1. Is satisfiability of positive queries decidable? If yes, what does an algorithm look like?
If not, how can one prove undecidability?

2. Are positive queries safe?

3. Can one represent positive queries in relational algebra? If one can, explain how. If not,
provide a proof.

Sample solution.

Regarding the first question, we show that every positive formula is satisfiable. Therefore, every
positive query is satisfiable. Since positivity of a formula can be verified by a straightforward
syntactic check, the set of satisfiable positive formulas is decidable.
let φ be a positive formula and d be a fresh constant not occurring in φ. Let Atomφ be the set
of all atoms occurring φ and let Iφ be obtained from Atomφ by substituting d for every variable
occurring in an atom of φ. Let αd be the assignment that maps every variable to d. Then one
can show in a straightforward manner that Iφ, αd |= φ.

Regarding the second claim, consider the formula

φ(x, y) = P (x) ∨R(y).

Then for every instance I we have that

Qφ(I) = { (d, e) | d ∈ P I and e ∈ dom } ∪ { (d, e) | d ∈ dom and e ∈ RJ },

which is an infinite set. This example shows that also disjunction can give rise to unsafe queries.

The fact that positive queries may be unsafe precludes the possibility to represent positive
queries in relational algebra.

4. Query Semantics and Integrity Constraints

Let Σ be the signature with the schemas

S(theater, mtitle), M(title, director)

Intuitively S stands for “schedule” and M stands for “movie”. Both attributes, title and mtitle,
refer to the title of a movie.
Consider the following two first-order formulas with free variable t:

φ1 = ∃mS(t,m) ∧ ∀m′ (S(t,m′)→ M(m′, ’Tarantino’))

φ2 = ∃mS(t,m) ∧ ∀m′, d (S(t,m′) ∧M(m′, d)→ d = ’Tarantino’).

and the corresponding two relational calculus queries

Q1 = { t | φ1 }

Q2 = { t | φ2 }.

You may remember that we discussed the two queries in the lab and were wondering whether
they were equivalent.

1. Is one of the two queries Q1, Q2 contained in the other?

If you claim that Qi v Qj , provide an argument (not necessarily a formal proof). If you
claim that Qi 6v Qj , give a database instance I such that Qi(I) 6⊆ Qj(I).

Consider in addition the following two integrity constraints:

γK = ∀m, d, d′ (M(m, d) ∧M(m, d′)→ d = d′)

γFK = ∀ t,m∃ d (S(t,m)→ M(m, d)).

Clearly, γK is a primary key constraint that states that title is the primary key of M, while γFK is
a foreign key constraint that states that the mtitle attribute of S refers to the key attribute title
of M.

2. What can you say about the containment of the two queries if you consider only instances
that satisfy one or both of the constraints γK and γFK?

Note that these are three cases. For each case, two possible containments have to be
considered.

Sample solution to Question 1.

If the first query retrieves a theater, then for any movie shown in the theater Tarantino is a
director. If the second query retrieves a theater, then for any movie shown in the theater no
director other than Tarantino exists. Thus, if theater t1 shows a movie m1 with two directors,
one of which is Tarantino, then t1 is retrieved by query Q1, but not by by query Q2. However,
if theater t2 shows a movie m2 without director, then t2 is retrieved by query Q2, but not by by
query Q1. An instance serving as a counterexample to both containments is thus I1, defined as
follows:

I1 = { S(‘Roxy’, ‘Reservoir Cats’),
M(‘Reservoir Cats’, ‘Tarantino’), M(‘Reservoir Cats’, ‘Torontono’),
S(‘Palace’, ‘The Great Gatsby’) }.

With this definition we have

Q1(I1) = { ‘Roxy’ }
Q2(I1) = { ‘Palace’ }.

Thus, none of the two queries is contained in the other.

Sample solution to Question 2.

If we consider only instances that satisfy γK, then we have Q1 v Q2, but not vice versa. To see
this, consider an instance I that satisfies γK. Suppose that t ∈ Q1(I). Then for any movie m on
schedule at t, there is a tuple M(m, ’Tarantino’) in I. Since the key constraint γK holds over I,
this is the only M record for such an m. Thus t satisfies also Q2. That Q2 is not contained in
Q1 is shown by the instance IK = {S(‘Palace’, ‘The Great Gatsby’) }, which satisfies γK and
for which we have Q1(IK) = ∅, while Q2(IK) = { ‘Palace’ }.
If we consider only instances that satisfy γFK, then we have Q2 v Q1, but not vice versa. To
see this, consider an instance I that satisfies γFK. Suppose that t ∈ Q2(I). Let S(t,m) be an
S-record for t in I. Since I satisfies γFK, there is a corresponding M record M(m, d). Since t is
returned by Q2, we have that d = ’Tarantino’. Thus, t is also returned by Q1. That Q1 is not
contained in Q2 is shown by the instance

IFK = S(‘Roxy’, ‘Reservoir Cats’),
M(‘Reservoir Cats’, ‘Tarantino’), M(‘Reservoir Cats’, ‘Torontono’) },

which satisfies γFK and for which we have Q2(IFK) = ∅, while Q1(IFK) = { ‘Roxy }.
If we consider only instances that satisfy both constraints, then Q1 and Q2 are mutually con-
tained and thus equivalent.

