Ontology and Database Systems: Foundations of Database Systems Part 6: Datalog with Negation

Werner Nutt

Faculty of Computer Science Master of Science in Computer Science

A.Y. 2016/2017

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

<ロト <四ト <注入 <注下 <注下 <

The Issue

- In Relational Calculus and Relational Algebra, we have negation (¬) as an operator
- Thus, queries like the complement of a relation or the difference between two relations are easily expressible
- These queries can not be expressed in datalog (monotonicity)
- \sim Extension of datalog with negation!

Example

```
ready(D) \leftarrow device(D), \neg busy(D)
```

Giving a semantics is not straightforward because of possible cyclic definitions:

Example

$$single(X) \leftarrow man(X), \neg husband(X)$$

 $husband(X) \leftarrow man(X), \neg single(X)$

Datalog Syntax

Definition

A datalog \neg program P is a finite set of datalog \neg rules r of the form

$$A \leftarrow B_1, \dots, B_n \tag{1}$$

where $n \ge 0$ and

- A is an atom $R_0(\vec{x}_0)$
- each B_i is an atom $R_i(\vec{x}_i)$ or a negated atom $\neg R_i(\vec{x}_i)$
- $\vec{x}_0, \ldots, \vec{x}_n$ are tuples of variables and constants (from **dom**)
- every variable in $\vec{x}_0, \ldots, \vec{x}_n$ must occur in some atom $B_i = R_i(\vec{x}_i)$ ("safety")
- the head of r is A, denoted H(r)
- the body of r is $\{B_1, \ldots, B_n\}$, denoted B(r), and $B^+(r) = \{R(\vec{x}) \mid \exists i B_i = R(\vec{x})\}, B^-(r) = \{R(\vec{x}) \mid \exists i B_i = \neg R(\vec{x})\}$

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog program.

W. Nutt

Datalog[¬] Semantics – First Attempt

- Idea: Naturally extend the minimal-model semantics of datalog (equivalently, the least fixpoint-semantics) to negation
- Generalize to this aim the immediate consequence operator

 $\mathbf{T}_{P}(\mathbf{K}): inst(sch(P)) \rightarrow inst(sch(P))$

Definition

Given a datalog[¬] program P and $\mathbf{K} \in inst(sch(P))$, a fact $R(\vec{t})$ is an *immediate* consequence for \mathbf{K} and P, if either

- $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or
- $\bullet\,$ there exists some ground instance r of a rule in P such that

•
$$H(r) = R(\vec{t}),$$

•
$$B^+(r) \subseteq {f K}$$
, and

• $B^-(r) \cap \mathbf{K} = \emptyset$

(that is, evaluate " \neg " w.r.t. **K**)

Problems with Least Fixpoints

Natural trial: Define the semantics of datalog[¬] in terms of least fixpoint of T_P . However, this suffers from several problems:

1 \mathbf{T}_P may not have a fixpoint:

$$P_1 = \{ known(a) \leftarrow \neg known(a) \}$$

2 \mathbf{T}_P may not have a least (i.e., single minimal) fixpoint:

$$P_{2} = \{ single(X) \leftarrow man(X), \neg husband(X) \\ husband(X) \leftarrow man(X), \neg single(X) \}$$

 $I = \{man(dilbert)\}$

On The least fixpoint of T_P including I may not be constructible by fixpoint iteration (i.e., not as limit T^ω_P(I) of {Tⁱ_P(I)}_{i≥0}):

$$P_3 = P_2 \cup \{ \mathsf{husband}(X) \leftarrow \neg \mathsf{husband}(X), \mathsf{single}(X) \}$$

 $I = \{man(dilbert)\})$ as above

Note: The operator T_P is not monotonic!

Problems with Minimal Models

There are similar problems for model-theoretic semantics

• We can associate with P naturally a first-order theory Σ_P as in the negation-free case (write rules as implications):

$$R(x) \leftarrow (\neg) R_1(x_1), \dots, (\neg) R_n(x_n)$$

$$\rightsquigarrow$$

$$\forall \vec{x} \forall \vec{x}_1 \dots \forall \vec{x}_n (((\neg) R_1(\vec{x}_1) \land \dots \land (\neg) R_n(\vec{x}_n)) \rightarrow R(\vec{x}))$$

 $() \mathbf{D} (\rightarrow)$

- Still, $\mathbf{K} \in inst(sch(P))$ is a model of Σ_P iff $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$ (and models are not necessarily fixpoints)
- However, multiple minimal models of Σ_P containing \mathcal{I} might exist (*dilbert* example).

Solution Approaches

Different kinds of proposals have been made to handle the problems above

- Give up single fixpoint/model semantics: Consider alternative fixpoints (models), and define results by *intersection*, called *certain semantics*. Most well-known: Stable model semantics (Gelfond & Lifschitz, 1988;1991). Still suffers from 1.
- **Constrain the syntax of programs:** Consider only fragment where negation can be "naturally" evaluated to a single minimal model. Most well-known: semantics for stratified programs (Apt, Blair & Walker, 1988), perfect model semantics (Przymusinski, 1987).

Solution Approaches/2

- Give up 2-valued semantics: Facts might be true, false or unknown Adapt and refine the notion of immediate consequence. Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf, 1991). Resolves all problems 1-3
- **Give up fixpoint/minimality condition:** Operational definition of result. Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

Semi-Positive Datalog

"Easy" case: Datalog \neg programs where negation is applied only to *edb* relations.

- Such programs are called semi-positive
- For a semi-positive program, the operator T_P is monotonic if the *edb*-part is fixed, i.e., I ⊆ J and I|*edb*(P) = J|*edb*(P) implies T_P(I) ⊆ T_P(J)

Theorem

Let P be a semi-positive datalog program and $I \in inst(sch(P))$. Then,

- \mathbf{T}_P has a unique minimal fixpoint \mathbf{J} among all \mathbf{I} such that $\mathbf{I}|edb(P) = \mathbf{J}|edb(P)$.
- **2** Σ_P has a unique minimal model **J** among all **I** such that $\mathbf{I}|edb(P) = \mathbf{J}|edb(P)$.

Example

Semi-positive datalog can express

the transitive closure of the complement of a graph G:

$$\begin{split} & \textit{neg_tc}(x,y) \leftarrow \neg G(x,y) \\ & \textit{neg_tc}(x,y) \leftarrow \neg G(x,z), \textit{neg_tc}(z,y) \end{split}$$

Stratified Semantics

Intuition: For evaluating the body of a rule instance r containing $\neg R(\vec{t})$, the value of the "negated" relation $R(\vec{t})$ should be known.

- Evaluate first R
- 2 if $R(\vec{t})$ is false, then $\neg R(\vec{t})$ is true,
- **③** if $R(\vec{t})$ is true, then $\neg R(\vec{t})$ is false and the rule is not applicable.

Example

 $\begin{aligned} & \textit{boring(chess)} \leftarrow \neg \textit{interesting(chess)} \\ & \textit{interesting}(X) \leftarrow \textit{difficult}(X) \end{aligned}$ For $\mathbf{I} = \{\}$, we compute the result $\{\textit{boring(chess)}\}$.

Note: this introduces procedurality (which violates declarativity)!

W. Nutt

Dependency Graph for Datalog Programs

Associate with each datalog \neg program P a directed graph DEP(P) = (N, E), called *dependency graph*, as follows:

- $N = \operatorname{sch}(P)$, i.e., the nodes are the relations
- $E = \{ \langle R, R' \rangle \mid \exists r \in P : H(r) = R \land R' \in B(r) \}$, i.e., there are edges $R \to R'$ from the relations in rule heads to the relations in the body

• Mark each arc
$$R \to R'$$
 with "*",
if $R(\vec{x})$ is in the head of a rule in P
whose body contains $\neg R'(\vec{y})$.

Remark: edb relations are often omitted in the dependency graph

Example

$$\begin{array}{rcl} P: & \textit{husband}(X) \leftarrow \textit{man}(X), & \textit{married}(X).\\ & \textit{single}(X) \leftarrow \textit{man}(X), & \neg\textit{husband}(X).\\ & & & & \\ & & & & \\ & & & &$$

Definition (Stratification Principle)

If $R = R_0 \rightarrow R_1 \rightarrow R_2 \rightarrow \cdots \rightarrow R_{n-1} \rightarrow R_n = R'$ such that some $R_i \rightarrow R_{i+1}$ is marked with "*", then R' must be evaluated prior to R.

Stratification

Definition

A stratification of a datalog program P is a partitioning

$$\Sigma = \bigcup_{i \ge 1}^{n} P_i$$

of sch(P) into nonempty, pairwise disjoint sets P_i such that (a) if $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in DEP(P), then $i \ge j$; (b) if $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in DEP(P) marked with "*," then i > j.

 P_1, \ldots, P_n are called the *strata* of P w.r.t. Σ

Definition

A datalog program P is called *stratified*, if it has some stratification Σ .

. . .

Evaluation Order

A stratification Σ gives an *evaluation order* for the relations in P, given $\mathbf{I} \in inst(edb(P))$:

- First evaluate the relations in P₁ (which is ¬-free).
 ⇒ All relations R in heads of P₁ are defined. This yields J₁ ∈ inst(sch(P₁)).
- **②** Evaluate P_2 considering relations in edb(P) and P_1 as $edb(P_1)$, where $\neg R(\vec{t})$ is true if $R(\vec{t})$ is false in $\mathbf{I} \cup \mathbf{J}_1$;

 \Rightarrow All relations R in heads of P_2 are defined. This yields $\mathbf{J}_2 \in inst(sch(P_2))$.

- **③** Evaluate P_i considering relations in edb(P) and P_1, \ldots, P_{i-1} as $edb(P_i)$, where $\neg R(\vec{t})$ is true if $R(\vec{t})$ is false in $\mathbf{I} \cup \mathbf{J}_1 \cup \cdots \cup \mathbf{J}_{i-1}$;
- **()** The result of evaluating P on \mathbf{I} w.r.t. Σ , denoted $P_{\Sigma}(\mathbf{I})$, is given by $\mathbf{I} \cup \mathbf{J}_1 \cup \cdots \cup \mathbf{J}_n$.

Example

$$P = \{ husband(X) \leftarrow man(X), married(X) \\ single(X) \leftarrow man(X), \neg husband(X) \}$$

Stratification Σ : $P_1 = \{man, married\}, P_2 = \{husband\}, P_3 = \{single\}$

- $I = \{man(dilbert)\}:$
 - Evaluate P_1 : $J_1 = \{\}$
 - 2 Evaluate P_2 : $J_2 = \{\}$
 - Solution Evaluate P_3 : $J_3 = \{single(dilbert)\}$
 - Hence, $P_{\Sigma}(\mathbf{I}) = \{man(dilbert)\}, single(dilbert)\}$

Formal Definition of Stratified Semantics

Let P be a stratified Datalog[¬] program with stratification $\Sigma = \bigcup_{i=1}^{n} P_i$.

- Let P_i^* be the set of rules from P whose relations in the head are in P_i , and set $edb(P_1^*) = edb(P)$, $edb(P_i^*) = rels(\bigcup_{j=1}^{i-1} P_j^*) \cup edb(P)$, i > 1.
- For every $\mathbf{I} \in \textit{inst}(\textit{edb}(P))$, let $\mathbf{I}_0^{\Sigma} = \mathbf{I}$ and define

$$\begin{array}{rclcrcl} \mathbf{I}_{1}^{\Sigma} &=& \mathbf{T}_{P_{1}^{*}}^{\omega}(\mathbf{I}_{0}^{\Sigma}) &=& \textit{lfp}(\mathbf{T}_{P_{1}^{*}}(\mathbf{I}_{0}^{\Sigma})) &\supseteq& \mathbf{I}_{0}^{\Sigma} \\ \mathbf{I}_{2}^{\Sigma} &=& \mathbf{T}_{P_{2}^{*}}^{\omega}(\mathbf{I}_{1}^{\Sigma}) &=& \textit{lfp}(\mathbf{T}_{P_{2}^{*}}(\mathbf{I}_{1}^{\Sigma})) &\supseteq& \mathbf{I}_{1}^{\Sigma} \\ & & \cdots & & \\ \mathbf{I}_{i}^{\Sigma} &=& \mathbf{T}_{P_{i}^{*}}^{\omega}(\mathbf{I}_{i-1}^{\Sigma}) &=& \textit{lfp}(\mathbf{T}_{P_{i}^{*}}(\mathbf{I}_{i-1}^{\Sigma})) &\supseteq& \mathbf{I}_{i-1}^{\Sigma} \\ & & \cdots & & \\ \mathbf{I}_{n}^{\Sigma} &=& \mathbf{T}_{P_{n}^{*}}^{\omega}(\mathbf{I}_{n-1}^{\Sigma}) &=& \textit{lfp}(\mathbf{T}_{P_{n}^{*}}(\mathbf{I}_{n-1}^{\Sigma})) &\supseteq& \mathbf{I}_{n-1}^{\Sigma} \end{array}$$

where $\mathbf{T}_Q^{\omega}(\mathbf{J}) = \lim \{\mathbf{T}_Q^i(\mathbf{J})\}_{i \geq 0}$ with $\mathbf{T}_Q^0(\mathbf{J}) = \mathbf{J}$ and $\mathbf{T}_Q^{i+1} = \mathbf{T}_Q(\mathbf{T}_Q^i(\mathbf{J}))$, and $lfp(\mathbf{T}_Q(\mathbf{J}))$ is the least fixpoint \mathbf{K} of \mathbf{T}_Q such that $\mathbf{K}|edb(Q) = \mathbf{J}|edb(Q)$.

• Denote $P_{\Sigma}(\mathbf{I}) = \mathbf{I}_n^{\Sigma}$

Formal Definition of Stratified Semantics/2

Proposition

For every $i \in \{1, \ldots, n\}$,

- If $p(\mathbf{T}_{P_i^*}(\mathbf{I}_{i-1}^\Sigma))$ exists,
- $\mathit{lfp}(\mathbf{T}_{P_i^*}(\mathbf{I}_{i-1}^\Sigma)) = \mathbf{T}_{P_i^*}^\omega(\mathbf{I}_{i-1}^\Sigma)$ holds,

•
$$\mathbf{I}_{i-1}^{\Sigma} \subseteq \mathbf{I}_i^{\Sigma}$$
.

Therefore, $P_{\Sigma}(\mathbf{I})$ is always well-defined.

Theorem

```
P_{\Sigma}(\mathbf{I}) is a minimal model \mathbf{K} of P such that \mathbf{K}|edb(P) = \mathbf{I}.
```

Dilbert Example cont'd

$$\begin{split} P &= \{ \begin{array}{cc} \textit{husband}(X) \leftarrow \textit{man}(X), \textit{ married}(X) \\ \textit{single}(X) \leftarrow \textit{man}(X), \textit{ ¬husband}(X) \} \\ \textit{edb}(P) &= \{\textit{man}\} \end{split}$$

Stratification Σ : $P_1 = \{man, married\}, P_2 = \{husband\}, P_3 = \{single\}$

$$\begin{array}{l} \bullet P_1 = \{\}\\ \bullet P_2 = \{husband(X) \leftarrow man(X), married(X)\}\\ \bullet P_3 = \{single(X) \leftarrow man(X), \neg husband(X)\} \end{array}$$

 $\mathbf{I} = \{\textit{man}(\textit{dilbert})\}:$

Hence, $P_{\Sigma}(\mathbf{I}) = \{man(dilbert), single(dilbert)\}$

Stratification Theorem

The stratification $\boldsymbol{\Sigma}$ above is not unique

• Alternative stratification Σ' :

 $P_1 = \{man, married, husband\}, P_2 = \{single\}$

• Evaluation with respect to Σ' yields same result!

The choice of a particular stratification is irrelevant:

Theorem (Stratification Theorem)

Let P be a stratifiable datalog[¬] program. Then, for any stratifications Σ and Σ' and $\mathbf{I} \in inst(sch(P))$, $P_{\Sigma}(\mathbf{I}) = P_{\Sigma'}(\mathbf{I})$.

- Thus, syntactic stratification yields semantically a canonical way of evaluation.
- The result $P_{str}(\mathbf{I})$ is called the *perfect model* or *stratified model* of P for I.

Remark: Prolog features SLDNF – SLD resolution with (finite) negation as failure

Determine whether safe connections between locations in a railroad network

- Cutpoint c for a and b: if c fails, there is no connection between a and b
- Safe connection between a and b: no cutpoints between a and b exist
- E.g., ter is a cutpoint for olfe and semel, while quincy is not

Relations:

link(X, Y): direct connection from station X to Y (edb facts) linked(A, B): symmetric closure of link. connected(A, B): there is path between A and B (one or more links) cutpoint(X, A, B): each path from A to B goes through station X circumvent(X, A, B): there is a path between A and B not passing X $has_icut_point(A, B)$: there is at least one cutpoint between A and B. $safely_connected(A, B)$: A and B are connected with no cutpoint. station(X): X is a railway station.

Railroad program P:

: $linked(A, B) \leftarrow link(A, B)$. r_1 r_2 : $linked(A, B) \leftarrow link(B, A).$ $connected(A, B) \leftarrow linked(A, B).$ r_3 : $connected(A, B) \leftarrow connected(A, C), linked(C, B).$ r_4 : r_5 : $cutpoint(X, A, B) \leftarrow connected(A, B), station(X),$ $\neg circumvent(X, A, B).$ $circumvent(X, A, B) \leftarrow linked(A, B), X \neq A, station(X), X \neq B.$ r_6 : $circumvent(X, A, B) \leftarrow circumvent(X, A, C), circumvent(X, C, B).$ r_7 : $has_icut_point(A, B) \leftarrow cutpoint(X, A, B), X \neq A, X \neq B.$ r_8 : $safely_connected(A, B) \leftarrow connected(A, B),$ rg: $\neg has_icut_point(A, B).$

 r_{10} : $station(X) \leftarrow linked(X, Y)$.

Remark: Inequality (\neq) is used here as built-in. It can be easily defined in stratified manner.

DEP(P):

Stratification Σ :

$$P_{1} = \{link, linked, station, circumvent, connected\}$$

$$P_{2} = \{cutpoint, has_icut_point\}$$

$$P_{3} = \{safely_connected\}$$

W. Nutt

$$\begin{split} \mathbf{I}(link) &= \{ \begin{array}{l} \langle semel, bis \rangle, \langle bis, ter \rangle, \langle ter, olfe \rangle, \langle ter, icsi \rangle, \langle ter, quincy \rangle, \\ \langle quincy, semel \rangle, \langle quincy, clote \rangle, \langle quincy, mamuk \rangle, \dots, \langle dalte, quater \rangle \end{array} \} \end{split}$$

Evaluation $P_{\Sigma}(\mathbf{I})$:

• $P_1 = \{link, linked, station, circumvent, connected\}:$

 $\mathbf{J}_1 = \{ linked(semel, bis), linked(bis, ter), linked(ter, olfe), \dots, \\ connected(semel, olfe), \dots, circumvent(quincy, semel, bis), \dots \}$

2
$$P_2 = \{cutpoint, has_icut_point\}:$$

 $\mathbf{J}_2 = \{ cutpoint(ter, semel, olfe), has_icut_point(semel, olfe) \dots \}$

 $P_3 = \{safely_connected\}:$

$$\begin{split} \mathbf{J}_3 &= \{ safely_connected(semel, bis), \; safely_connected(semel, ter) \} \\ \mathsf{But}, \; safely_connected(semel, olfe) \notin \mathbf{J}_3 \end{split}$$

Algorithm STRATIFY

A datalog program PInput: **Output:** A stratification Σ for P, or "no" if none exists **Output** Construct the directed graph G := DEP(P) (= $\langle N, E \rangle$) with markers "*"; **2** For each pair $(R, R') \in N \times N$ do if R reaches R' via some path containing a marked arc then $E := E \cup \{R \to R'\}$; mark $R \to R'$ with "*"; **3** i := 1: Identify the set K of all vertices R in G s.t. no marked $R \to R'$ is in E **(5)** If $K = \emptyset$ and G has vertices left, then output "no" else output K as stratum P_i ; remove all vertices in K and corresponding arcs from G; If G has vertices left then i := i + 1; goto step 4; else stop.

Runs in polynomial time!

Stable Models Semantics

- Idea: Try to construct a (minimal) fixpoint by iteration from input. If the construction succeeds, the result is the semantics.
- Problem: Application of rules might be compromised.

Example

$$P = \{ p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b) \}$$

 $(edb(P) \text{ is void, thus } \mathbf{I} \text{ is immaterial and omitted})$

- \mathbf{T}_P has the least fixpoint $\{p(a), q(b)\}$
- It is iteratively constructed $\mathbf{T}_{P}^{\omega} = \{p(a), q(b)\}$
- p(a) is included into \mathbf{T}_P^1 by the first rule, since $p(a) \notin \mathbf{T}_P^0 = \emptyset$.
- This compromises the rule application, and p(a) is not "foundedly" derived!

Fixed Evaluation of Negation

Observation: T_P is not monotonic.

Solution: Keep negation throughout fixpoint-iteration fixed.

- $\bullet\,$ Evaluate negation w.r.t. a fixed candidate fixpoint model ${\bf J}$
- Introduce for datalog[¬] program and $J \in inst(sch(P))$ a new immediate consequence operator $T_{P,J}$:

Immediate Consequences under Fixed Negation

Definition

Given a datalog[¬] program P and $\mathbf{J}, \mathbf{K} \in inst(sch(P))$, a fact $R(\vec{t})$ is an *immediate* consequence for \mathbf{K} and P under negation \mathbf{J} , if either

• $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or

 $\bullet\,$ there exists some ground instance r of a rule in P such that

•
$$H(r) = R(\vec{t})$$
,
• $B^+(r) \subseteq \mathbf{K}$, and
• $B^-(r) \cap \mathbf{J} = \emptyset$
(that is, evaluate " \neg " under \mathbf{J} instead of \mathbf{K})

Immediate Consequences under Fixed Negation/2

Definition

For any datalog[¬] program P and $\mathbf{J}, \mathbf{K} \in inst(sch(P))$, let

 $\mathbf{T}_{P,\mathbf{J}}(\mathbf{K}) = \{A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P$ under negation $\mathbf{J}\}$

Notice:

- $\mathbf{T}_{P}(\mathbf{K})$ coincides with $\mathbf{T}_{P,\mathbf{K}}(\mathbf{K})$
- $\mathbf{T}_{P,\mathbf{J}}$ is a monotonic operator, hence has for each $\mathbf{K} \in inst(sch(P))$ a least fixpoint containing \mathbf{K} , denoted $lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{K}))$
- $lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{I}))$ coincides with \mathbf{I} on edb(P) and is the limit $\mathbf{T}_{P,\mathbf{J}}^{\omega}(\mathbf{I})$ of the sequence

$$\{\mathbf{T}_{P,\mathbf{J}}^{i}(\mathbf{I})\}_{i\geq 0},$$

where $\mathbf{T}_{P,\mathbf{J}}^0(\mathbf{I})=\mathbf{I}$ and $\mathbf{T}_{P,\mathbf{J}}^{i+1}(\mathbf{I})=\mathbf{T}_{P,\mathbf{J}}(\mathbf{T}_{P,\mathbf{J}}^i(\mathbf{I})).$

Stable Models

Using $T_{P,J}$, stable models are defined by requiring that J is reproduced by the program:

Definition

Let P be a datalog program P and $\mathbf{I} \in inst(edb(P))$. Then, a stable model for P and I is any $\mathbf{J} \in inst(sch(P))$ such that

$$J|edb(P) = I, and$$

$$2 \quad \mathbf{J} = lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{I})).$$

Notice: Monotonicity of $\mathbf{T}_{P,\mathbf{J}}$ ensures that at no point in the construction of $lfp(\mathbf{T}_{P,\mathbf{J}})(\mathbf{I})$ using fixpoint iteration from \mathbf{I} , the application of a rule can be compromised later.

Example

Let

$$P = \{ p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b) \}$$

 $(edb(P) \text{ is void, thus } \mathbf{I} \text{ is immaterial and omitted})$

• Take
$$\mathbf{J} = \{p(a), q(b)\}$$
. Then
• $\mathbf{T}_{P,\mathbf{J}}^0 = \emptyset$
• $\mathbf{T}_{P,\mathbf{J}}^1 = \emptyset$

- Thus $lfp(\mathbf{T}_{P,\mathbf{J}}) = \emptyset \neq \mathbf{J}.$
- Hence, the fixpoint \mathbf{J} of \mathbf{T}_P is refuted.
- For P, no stable model exists; thus, it may be regarded as "inconsistent".

Nondeterminism

• Problem: A datalog program may have multiple stable models:

$$P = \{ \begin{array}{c} \textit{single}(X) \leftarrow \textit{man}(X), \neg\textit{husband}(X) \\ \textit{husband}(X) \leftarrow \textit{man}(X), \neg\textit{single}(X) \end{array} \}$$

- $\mathbf{I} = \{\textit{man}(\textit{dilbert})\}$
- $J_1 = \{man(dilbert), single(dilbert)\}$ is a stable model:

•
$$\mathbf{T}_{P,\mathbf{J}_{1}}^{0}(\mathbf{I}) = \{man(dilbert)\}$$

• $\mathbf{T}_{P,\mathbf{J}_{1}}^{1}(\mathbf{I}) = \{man(dilbert), single(dilbert)\}$ (apply 2nd rule)
• $\mathbf{T}_{P,\mathbf{J}_{1}}^{2}(\mathbf{I}) = \{man(dilbert), single(dilbert)\} = \mathbf{T}_{P,\mathbf{J}_{1}}^{\omega}(\mathbf{I})$

• Similarly, $J_2 = \{man(dilbert), husband(dilbert)\}$ is a stable model (symmetry)

Stable Model Semantics – Definition

Solution: Define stable model semantics of P as the intersection of all stable models (*certain semantics*):

Denote for a datalog program P and $\mathbf{I} \in inst(edb(P))$ by $SM(P, \mathbf{I})$ the set of all stable models for \mathbf{I} and P.

Definition

The stable models semantics of a datalog \neg program P for $\mathbf{I} \in \textit{inst}(\textit{edb}(P))$, denoted $P_{\rm sm}(\mathbf{I})$, is given by

 $P_{sm}(\mathbf{I}) = \begin{cases} \bigcap SM(P, \mathbf{I}), & \text{if } SM(P, \mathbf{I}) \neq \emptyset, \\ \mathbf{B}(P, \mathbf{I}), & \text{otherwise.} \end{cases}$

Examples

Example

$$P = \{ single(X) \leftarrow man(X), \neg husband(X) \\ husband(X) \leftarrow man(X), \neg single(X) \}$$

 $P_{sm}(\{man(dilbert)\}) = \{man(dilbert)\}$

Example

$$\begin{split} P &= \{p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b)\}\\ P_{\mathsf{sm}}(\emptyset) &= \{p(a), p(b), q(a), q(b)\} = \mathbf{B}(P, \mathbf{I}). \end{split}$$

Some Properties

Proposition

Each $\mathbf{K} \in SM(P, \mathbf{I})$ is a minimal model \mathbf{K} of P such that $\mathbf{K}|edb(P) = \mathbf{I}$.

Proposition

Each $\mathbf{K} \in SM(P, \mathbf{I})$ is a minimal fixpoint \mathbf{K} of \mathbf{T}_P such that $\mathbf{K}|edb(P) = \mathbf{I}$.

Theorem

If P is a stratified program, than for every $\mathbf{I} \in edb(P)$, $P_{sm}(\mathbf{I}) = P_{strat}(\mathbf{I})$. Thus, stable model semantics extends stratified semantics to a larger class of programs

Evaluation of stable model semantics is intractable: Deciding whether $R(\vec{c}) \in P_{sm}(\mathbf{I})$ for given $R(\vec{c})$ and \mathbf{I} (while P is fixed) is coNP-complete.