
Ontology and Database Systems:
Foundations of Database Systems

Part 6: Datalog with Negation

Werner Nutt

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2016/2017

Foundations of Database Systems

The Issue

In Relational Calculus and Relational Algebra,
we have negation (¬) as an operator

Thus, queries like the complement of a relation or
the difference between two relations are easily expressible

These queries can not be expressed in datalog (monotonicity)

; Extension of datalog with negation!

Example

ready(D)← device(D),¬busy(D)

Giving a semantics is not straightforward because of possible cyclic definitions:

Example

single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X)

W. Nutt ODBS-FDBs 2016/2017 (1/35)

Foundations of Database Systems

Datalog¬ Syntax

Definition

A datalog¬ program P is a finite set of datalog¬ rules r of the form

A← B1, . . . , Bn (1)

where n ≥ 0 and

A is an atom R0(~x0)

each Bi is an atom Ri(~xi) or a negated atom ¬Ri(~xi)

~x0, . . . , ~xn are tuples of variables and constants (from dom)

every variable in ~x0, . . . , ~xn must occur in some atom Bi = Ri(~xi) (“safety”)

the head of r is A, denoted H(r)

the body of r is {B1, . . . , Bn }, denoted B(r), and
B+(r) = {R(~x) | ∃i Bi = R(~x)}, B−(r) = {R(~x) | ∃i Bi = ¬R(~x)}

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog
program.

W. Nutt ODBS-FDBs 2016/2017 (2/35)

Foundations of Database Systems

Datalog¬ Semantics – First Attempt

Idea: Naturally extend the minimal-model semantics of datalog
(equivalently, the least fixpoint-semantics) to negation

Generalize to this aim the immediate consequence operator

TP (K) : inst(sch(P))→ inst(sch(P))

Definition

Given a datalog¬ program P and K ∈ inst(sch(P)),
a fact R(~t) is an immediate consequence for K and P , if either

R ∈ edb(P) and R(~t) ∈ K, or

there exists some ground instance r of a rule in P such that

H(r) = R(~t),
B+(r) ⊆ K, and
B−(r) ∩K = ∅

(that is, evaluate “¬” w.r.t. K)

W. Nutt ODBS-FDBs 2016/2017 (3/35)

Foundations of Database Systems

Problems with Least Fixpoints

Natural trial: Define the semantics of datalog¬ in terms of least fixpoint of TP .
However, this suffers from several problems:

1 TP may not have a fixpoint:

P1 = { known(a)← ¬known(a) }

2 TP may not have a least (i.e., single minimal) fixpoint:

P2 = { single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X) }

I = {man(dilbert)}
3 The least fixpoint of TP including I may not be constructible by fixpoint

iteration (i.e., not as limit Tω
P (I) of {Ti

P (I)}i≥0):

P3 = P2 ∪ {husband(X)← ¬husband(X), single(X)}

I = {man(dilbert)}) as above

Note: The operator TP is not monotonic!

W. Nutt ODBS-FDBs 2016/2017 (4/35)

Foundations of Database Systems

Problems with Minimal Models

There are similar problems for model-theoretic semantics

We can associate with P naturally a first-order theory ΣP as in the
negation-free case (write rules as implications):

R(~x)← (¬)R1(~x1), . . . , (¬)Rn(~xn)

;

∀~x∀~x1 · · · ∀~xn(((¬)R1(~x1) ∧ · · · ∧ (¬)Rn(~xn))→ R(~x))

Still, K ∈ inst(sch(P)) is a model of ΣP iff
TP (K) ⊆ K (and models are not necessarily fixpoints)

However, multiple minimal models of ΣP containing I might exist
(dilbert example).

W. Nutt ODBS-FDBs 2016/2017 (5/35)

Foundations of Database Systems

Solution Approaches

Different kinds of proposals have been made to handle the problems above

Give up single fixpoint/model semantics: Consider alternative fixpoints
(models), and define results by intersection, called certain semantics.
Most well-known: Stable model semantics (Gelfond & Lifschitz,
1988;1991).
Still suffers from 1.

Constrain the syntax of programs: Consider only fragment where
negation can be “naturally” evaluated to a single minimal model.
Most well-known: semantics for stratified programs (Apt, Blair & Walker,
1988), perfect model semantics (Przymusinski, 1987).

W. Nutt ODBS-FDBs 2016/2017 (6/35)

Foundations of Database Systems

Solution Approaches/2

Give up 2-valued semantics: Facts might be true, false or unknown
Adapt and refine the notion of immediate consequence.
Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf,
1991).
Resolves all problems 1-3

Give up fixpoint/minimality condition: Operational definition of result.
Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

W. Nutt ODBS-FDBs 2016/2017 (7/35)

Foundations of Database Systems

Semi-Positive Datalog

“Easy” case: Datalog¬ programs where negation
is applied only to edb relations.

Such programs are called semi-positive

For a semi-positive program,
the operator TP is monotonic if the edb-part is fixed, i.e.,

I ⊆ J and I|edb(P) = J|edb(P) implies TP (I) ⊆ TP (J)

Theorem

Let P be a semi-positive datalog program and I ∈ inst(sch(P)). Then,

1 TP has a unique minimal fixpoint J among all I such that
I|edb(P) = J|edb(P).

2 ΣP has a unique minimal model J among all I such that
I|edb(P) = J|edb(P).

W. Nutt ODBS-FDBs 2016/2017 (8/35)

Foundations of Database Systems

Example

Semi-positive datalog can express

the transitive closure of the complement of a graph G:

neg tc(x, y) ← ¬G(x, y)

neg tc(x, y) ← ¬G(x, z), neg tc(z, y)

W. Nutt ODBS-FDBs 2016/2017 (9/35)

Foundations of Database Systems

Stratified Semantics

Intuition: For evaluating the body of a rule instance r containing ¬R(~t),
the value of the “negated” relation R(~t) should be known.

1 Evaluate first R

2 if R(~t) is false, then ¬R(~t) is true,

3 if R(~t) is true, then ¬R(~t) is false and the rule is not applicable.

Example

boring(chess) ← ¬interesting(chess)

interesting(X) ← difficult(X)

For I = {}, we compute the result {boring(chess)}.

Note: this introduces procedurality (which violates declarativity)!

W. Nutt ODBS-FDBs 2016/2017 (10/35)

Foundations of Database Systems

Dependency Graph for Datalog¬ Programs

Associate with each datalog¬ program P a directed graph DEP(P) = (N,E),
called dependency graph, as follows:

N = sch(P), i.e., the nodes are the relations

E = {〈R,R′〉 | ∃r ∈ P : H(r) = R ∧R′ ∈ B(r)},
i.e., there are edges R→ R′ from the relations in rule heads

to the relations in the body

Mark each arc R→ R′ with “*”,
if R(~x) is in the head of a rule in P

whose body contains ¬R′(~y).

Remark: edb relations are often omitted in the dependency graph

W. Nutt ODBS-FDBs 2016/2017 (11/35)

Foundations of Database Systems

Example

P : husband(X)← man(X), married(X).
single(X)← man(X), ¬husband(X).

DEP(P): *

married

man

husband

single

Definition (Stratification Principle)

If R = R0 → R1 → R2 → · · ·Rn−1 → Rn = R′ such that
some Ri → Ri+1 is marked with “*”,

then R′ must be evaluated prior to R.

W. Nutt ODBS-FDBs 2016/2017 (12/35)

Foundations of Database Systems

Stratification

Definition

A stratification of a datalog program P is a partitioning

Σ =

n⋃
i≥1

Pi

of sch(P) into nonempty, pairwise disjoint sets Pi such that

(a) if R ∈ Pi, R
′ ∈ Pj , and R→ R′ is in DEP(P), then i ≥ j;

(b) if R ∈ Pi, R
′ ∈ Pj , and R→ R′ is in DEP(P) marked with “*,”

then i > j.

P1, . . . , Pn are called the strata of P w.r.t. Σ

Definition

A datalog program P is called stratified, if it has some stratification Σ.

W. Nutt ODBS-FDBs 2016/2017 (13/35)

Foundations of Database Systems

Evaluation Order

A stratification Σ gives an evaluation order for the relations in P ,
given I ∈ inst(edb(P)):

1 First evaluate the relations in P1 (which is ¬-free).

⇒ All relations R in heads of P1 are defined. This yields J1 ∈ inst(sch(P1)).

2 Evaluate P2 considering relations in edb(P) and P1 as edb(P1), where ¬R(~t) is
true if R(~t) is false in I ∪ J1;

⇒ All relations R in heads of P2 are defined. This yields J2 ∈ inst(sch(P2)).

. . .

3 Evaluate Pi considering relations in edb(P) and P1, . . . , Pi−1 as edb(Pi), where
¬R(~t) is true if R(~t) is false in I ∪ J1 ∪ · · · ∪ Ji−1;

4 The result of evaluating P on I w.r.t. Σ, denoted PΣ(I), is given by
I ∪ J1 ∪ · · · ∪ Jn.

W. Nutt ODBS-FDBs 2016/2017 (14/35)

Foundations of Database Systems

Example

P = { husband(X)← man(X), married(X)
single(X)← man(X), ¬husband(X) }

Stratification Σ:
P1 = {man,married}, P2 = {husband}, P3 = {single}

I = {man(dilbert)}:
1 Evaluate P1: J1 = {}
2 Evaluate P2: J2 = {}
3 Evaluate P3: J3 = {single(dilbert)}
4 Hence, PΣ(I) = {man(dilbert)}, single(dilbert)}

W. Nutt ODBS-FDBs 2016/2017 (15/35)

Foundations of Database Systems

Formal Definition of Stratified Semantics

Let P be a stratified Datalog¬ program with stratification Σ =
⋃n

i=1 Pi.

Let P ∗i be the set of rules from P whose relations in the head are in Pi, and set
edb(P ∗1) = edb(P), edb(P ∗i) = rels(

⋃i−1
j=1 P

∗
j) ∪ edb(P), i > 1.

For every I ∈ inst(edb(P)), let IΣ
0 = I and define

IΣ
1 = Tω

P∗1
(IΣ

0) = lfp(TP∗1
(IΣ

0)) ⊇ IΣ
0

IΣ
2 = Tω

P∗2
(IΣ

1) = lfp(TP∗2
(IΣ

1)) ⊇ IΣ
1

. . .
IΣ
i = Tω

P∗i
(IΣ

i−1) = lfp(TP∗i
(IΣ

i−1)) ⊇ IΣ
i−1

. . .
IΣ
n = Tω

P∗n
(IΣ

n−1) = lfp(TP∗n (IΣ
n−1)) ⊇ IΣ

n−1

where Tω
Q(J) = lim{Ti

Q(J)}i≥0 with T0
Q(J) = J and Ti+1

Q = TQ(Ti
Q(J)), and

lfp(TQ(J)) is the least fixpoint K of TQ such that K|edb(Q) = J|edb(Q).

Denote PΣ(I) = IΣ
n

W. Nutt ODBS-FDBs 2016/2017 (16/35)

Foundations of Database Systems

Formal Definition of Stratified Semantics/2

Proposition

For every i ∈ {1, . . . , n},
lfp(TP∗i

(IΣ
i−1)) exists,

lfp(TP∗i
(IΣ

i−1)) = Tω
P∗i

(IΣ
i−1) holds,

IΣ
i−1 ⊆ IΣ

i .

Therefore, PΣ(I) is always well-defined.

Theorem

PΣ(I) is a minimal model K of P such that K|edb(P) = I.

W. Nutt ODBS-FDBs 2016/2017 (17/35)

Foundations of Database Systems

Dilbert Example cont’d

P = { husband(X)← man(X), married(X)
single(X)← man(X), ¬husband(X) }

edb(P) = {man}

Stratification Σ: P1 = {man,married}, P2 = {husband}, P3 = {single}

1 P1 = {}
2 P2 = {husband(X)← man(X), married(X)}
3 P3 = {single(X)← man(X), ¬husband(X)}

I = {man(dilbert)}:

1 IΣ
1 = {man(dilbert)}

2 IΣ
2 = {man(dilbert)}

3 IΣ
3 = {man(dilbert), single(dilbert)}

Hence, PΣ(I) = {man(dilbert), single(dilbert)}

W. Nutt ODBS-FDBs 2016/2017 (18/35)

Foundations of Database Systems

Stratification Theorem

The stratification Σ above is not unique

Alternative stratification Σ′:
P1 = {man,married, husband}, P2 = {single}
Evaluation with respect to Σ′ yields same result!

The choice of a particular stratification is irrelevant:

Theorem (Stratification Theorem)

Let P be a stratifiable datalog¬ program. Then, for any stratifications Σ and
Σ′ and I ∈ inst(sch(P)), PΣ(I) = PΣ′(I).

Thus, syntactic stratification yields semantically a canonical way of
evaluation.

The result Pstr(I) is called the perfect model or stratified model of P for I.

Remark: Prolog features SLDNF – SLD resolution with (finite) negation as failure

W. Nutt ODBS-FDBs 2016/2017 (19/35)

Foundations of Database Systems

Example: Railroad Network

Determine whether safe connections between locations in a railroad network

mamuk

clote

semel

quincy

olfe

ter

bis

dalte
quater

icsi

Cutpoint c for a and b: if c fails, there is no connection between a and b

Safe connection between a and b: no cutpoints between a and b exist

E.g., ter is a cutpoint for olfe and semel, while quincy is not

W. Nutt ODBS-FDBs 2016/2017 (20/35)

Foundations of Database Systems

Example: Railroad Network/2

Relations:

link(X ,Y): direct connection from station X to Y (edb facts)

linked(A,B): symmetric closure of link .

connected(A,B): there is path between A and B (one or more links)

cutpoint(X ,A,B): each path from A to B goes through station X

circumvent(X ,A,B): there is a path between A and B not passing X

has icut point(A,B): there is at least one cutpoint between A and B .

safely connected(A,B): A and B are connected with no cutpoint.

station(X): X is a railway station.

W. Nutt ODBS-FDBs 2016/2017 (21/35)

Foundations of Database Systems

Example: Railroad Network/3

Railroad program P :

r1 : linked(A,B)← link(A,B).

r2: linked(A,B)← link(B ,A).

r3: connected(A,B)← linked(A,B).

r4: connected(A,B)← connected(A,C), linked(C ,B).

r5: cutpoint(X ,A,B)← connected(A,B), station(X),
¬circumvent(X ,A,B).

r6: circumvent(X ,A,B)← linked(A,B),X 6= A, station(X),X 6= B .

r7: circumvent(X ,A,B)← circumvent(X ,A,C), circumvent(X ,C ,B).

r8: has icut point(A,B)← cutpoint(X ,A,B),X 6= A,X 6= B .

r9: safely connected(A,B)← connected(A,B),
¬has icut point(A,B).

r10: station(X)← linked(X ,Y).

Remark: Inequality (6=) is used here as built-in. It can be easily defined in stratified manner.

W. Nutt ODBS-FDBs 2016/2017 (22/35)

Foundations of Database Systems

Example: Railroad Network/3

DEP(P):

connected

circumvent
station linked

has_icut_point

link

cutpoint

safely_connected
*

*

Stratification Σ:

P1 = {link , linked , station, circumvent , connected}
P2 = {cutpoint , has icut point}
P3 = {safely connected}

W. Nutt ODBS-FDBs 2016/2017 (23/35)

Foundations of Database Systems

Example: Railroad Network/4

I(link) = { 〈semel , bis〉, 〈bis, ter〉, 〈ter , olfe〉, 〈ter , icsi〉, 〈ter , quincy〉,
〈quincy , semel〉, 〈quincy , clote〉, 〈quincy ,mamuk〉, . . . , 〈dalte, quater〉 }

Evaluation PΣ(I):

1 P1 = {link , linked , station, circumvent , connected}:

J1 = {linked(semel , bis), linked(bis, ter), linked(ter , olfe),. . . ,
connected(semel , olfe), . . . , circumvent(quincy , semel , bis), . . .}

2 P2 = {cutpoint , has icut point}:

J2 = {cutpoint(ter , semel , olfe), has icut point(semel , olfe) . . .}
3 P3 = {safely connected}:

J3 = {safely connected(semel , bis), safely connected(semel , ter)}
But, safely connected(semel , olfe) /∈ J3

W. Nutt ODBS-FDBs 2016/2017 (24/35)

Foundations of Database Systems

Algorithm STRATIFY

Input: A datalog¬ program P
Output: A stratification Σ for P , or “no” if none exists

1 Construct the directed graph G := DEP(P) (=〈N,E〉) with markers “*”;
2 For each pair (R,R′) ∈ N ×N do

if R reaches R′ via some path containing a marked arc
then E := E ∪ {R→ R′}; mark R→ R′ with “*” ;

3 i := 1;
4 Identify the set K of all vertices R in G s.t. no marked R→ R′ is in E
5 If K = ∅ and G has vertices left,

then output “no”
else output K as stratum Pi;

remove all vertices in K and corresponding arcs from G;
6 If G has vertices left

then i := i + 1; goto step 4;
else stop.

Runs in polynomial time!

W. Nutt ODBS-FDBs 2016/2017 (25/35)

Foundations of Database Systems

Stable Models Semantics

Idea: Try to construct a (minimal) fixpoint by iteration from input.
If the construction succeeds, the result is the semantics.

Problem: Application of rules might be compromised.

Example

P = {p(a)← ¬p(a), q(b)← p(a), p(a)← q(b)}
(edb(P) is void, thus I is immaterial and omitted)

TP has the least fixpoint {p(a), q(b)}
It is iteratively constructed Tω

P = {p(a), q(b)}
p(a) is included into T1

P by the first rule, since p(a) /∈ T0
P = ∅.

This compromises the rule application, and p(a) is not “foundedly” derived!

W. Nutt ODBS-FDBs 2016/2017 (26/35)

Foundations of Database Systems

Fixed Evaluation of Negation

Observation: TP is not monotonic.

Solution: Keep negation throughout fixpoint-iteration fixed.

Evaluate negation w.r.t. a fixed candidate fixpoint model J

Introduce for datalog¬ program and J ∈ inst(sch(P)) a new immediate
consequence operator TP,J:

W. Nutt ODBS-FDBs 2016/2017 (27/35)

Foundations of Database Systems

Immediate Consequences under Fixed Negation

Definition

Given a datalog¬ program P and J,K ∈ inst(sch(P)),
a fact R(~t) is an immediate consequence for K and P under negation J,
if either

R ∈ edb(P) and R(~t) ∈ K, or

there exists some ground instance r of a rule in P such that

H(r) = R(~t),
B+(r) ⊆ K, and
B−(r) ∩ J = ∅

(that is, evaluate “¬” under J instead of K).

W. Nutt ODBS-FDBs 2016/2017 (28/35)

Foundations of Database Systems

Immediate Consequences under Fixed Negation/2

Definition

For any datalog¬ program P and J,K ∈ inst(sch(P)), let

TP,J(K) = {A | A is an immediate consequence for K and P

under negation J}

Notice:

TP (K) coincides with TP,K(K)

TP,J is a monotonic operator, hence has for each K ∈ inst(sch(P)) a least
fixpoint containing K, denoted lfp(TP,J(K))

lfp(TP,J(I)) coincides with I on edb(P) and
is the limit Tω

P,J(I) of the sequence

{Ti
P,J(I)}i≥0,

where T0
P,J(I) = I and Ti+1

P,J(I) = TP,J(Ti
P,J(I)).

W. Nutt ODBS-FDBs 2016/2017 (29/35)

Foundations of Database Systems

Stable Models

Using TP,J, stable models are defined by requiring
that J is reproduced by the program:

Definition

Let P be a datalog¬ program P and I ∈ inst(edb(P)).
Then, a stable model for P and I is any J ∈ inst(sch(P)) such that

1 J|edb(P) = I, and

2 J = lfp(TP,J(I)).

Notice: Monotonicity of TP,J ensures that at no point in the construction of
lfp(TP,J)(I) using fixpoint iteration from I, the application of a rule can be
compromised later.

W. Nutt ODBS-FDBs 2016/2017 (30/35)

Foundations of Database Systems

Example

Let
P = { p(a)← ¬p(a), q(b)← p(a), p(a)← q(b) }

(edb(P) is void, thus I is immaterial and omitted)

Take J = {p(a), q(b)}. Then

T0
P,J = ∅

T1
P,J = ∅

Thus lfp(TP,J) = ∅ 6= J.

Hence, the fixpoint J of TP is refuted.

For P , no stable model exists; thus, it may be regarded as “inconsistent”.

W. Nutt ODBS-FDBs 2016/2017 (31/35)

Foundations of Database Systems

Nondeterminism

Problem: A datalog program may have multiple stable models:

P = { single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X) }

I = {man(dilbert)}

J1 = {man(dilbert), single(dilbert)} is a stable model:

T0
P,J1

(I) = {man(dilbert)}
T1

P,J1
(I) = {man(dilbert), single(dilbert)} (apply 2nd rule)

T2
P,J1

(I) = {man(dilbert), single(dilbert)} = Tω
P,J1

(I)

Similarly, J2 = {man(dilbert), husband(dilbert)} is a stable model
(symmetry)

W. Nutt ODBS-FDBs 2016/2017 (32/35)

Foundations of Database Systems

Stable Model Semantics – Definition

Solution: Define stable model semantics of P as the intersection of all stable
models (certain semantics):

Denote for a datalog¬ program P and I ∈ inst(edb(P)) by SM(P, I) the set of
all stable models for I and P .

Definition

The stable models semantics of a datalog¬ program P for I ∈ inst(edb(P)),
denoted Psm(I), is given by

Psm(I) =

{ ⋂
SM(P, I), if SM(P, I) 6= ∅,

B(P, I), otherwise.

W. Nutt ODBS-FDBs 2016/2017 (33/35)

Foundations of Database Systems

Examples

Example

P = { single(X) ← man(X),¬husband(X)
husband(X) ← man(X),¬single(X) }

Psm({man(dilbert)}) = {man(dilbert)}

Example

P = {p(a)← ¬p(a), q(b)← p(a), p(a)← q(b)}

Psm(∅) = {p(a), p(b), q(a), q(b)} = B(P, I).

W. Nutt ODBS-FDBs 2016/2017 (34/35)

Foundations of Database Systems

Some Properties

Proposition

Each K ∈ SM(P, I) is a minimal model K of P such that K|edb(P) = I.

Proposition

Each K ∈ SM(P, I) is a minimal fixpoint K of TP such that K|edb(P) = I.

Theorem

If P is a stratified program, than for every I ∈ edb(P), Psm(I) = Pstrat(I).
Thus, stable model semantics extends stratified semantics to a larger class of
programs

Evaluation of stable model semantics is intractable: Deciding whether
R(~c) ∈ Psm(I) for given R(~c) and I (while P is fixed) is coNP-complete.

W. Nutt ODBS-FDBs 2016/2017 (35/35)

	Foundations of Database Systems

