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Foundations of Database Systems

The Issue

@ In Relational Calculus and Relational Algebra,
we have negation (—) as an operator

@ Thus, queries like the complement of a relation or
the difference between two relations are easily expressible

@ These queries can not be expressed in datalog (monotonicity)

@ ~» Extension of datalog with negation!

Example
ready(D) + device(D), —busy(D)

Giving a semantics is not straightforward because of possible cyclic definitions:

Example
single(X) < man(X), ~husband(X)
husband(X) « man(X), —single(X)
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Foundations of Database Systems
Datalog ™ Syntax

Definition

A datalog™ program P is a finite set of datalog™ rules r of the form
A<+ Bi,...,B, (1)

where n > 0 and
@ A is an atom Ry (Zo)
@ each B; is an atom R;(&;) or a negated atom —R;(Z;)
Zo, ..., 2T are tuples of variables and constants (from dom)
every variable in Zo, ..., &, must occur in some atom B; = R;(%;) (“safety”)
the head of r is A, denoted H(r)

the body of r is {Bu, ..., B, }, denoted B(r), and
B (r) = {R(¥) | 3i B; = R(@)}, B~ (r) = {R(Z) | 3i B: = ~R(Z)}

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog _
program. unibz
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Foundations of Database Systems

Datalog™ Semantics — First Attempt

@ Idea: Naturally extend the minimal-model semantics of datalog
(equivalently, the least fixpoint-semantics) to negation

@ Generalize to this aim the immediate consequence operator

Tp(K) : inst(sch(P)) — inst(sch(P))

Definition

Given a datalog™ program P and K € inst(sch(P)),

a fact R(f) is an immediate consequence for K and P, if either
® R € edb(P) and R(i) € K, or
@ there exists some ground instance r of a rule in P such that

o H(r) = R(%),
e BY(r) CK, and
e BT(r)ynK==90

(that is, evaluate “=" w.r.t. K)
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Foundations of Database Systems

Problems with Least Fixpoints

Natural trial: Define the semantics of datalog™ in terms of least fixpoint of Tp.
However, this suffers from several problems:

@ Tp may not have a fixpoint:
Py = { known(a) < —known(a) }
@ Tp may not have a least (i.e., single minimal) fixpoint:

P, =/ single(X) < man(X), —husband(X)
husband(X) < man(X), —single(X) }
I = {man(dilbert)}
© The least fixpoint of Tp including I may not be constructible by fixpoint
iteration (i.e., not as limit T%(Z) of {T%H(I)}i>0):
Ps = P, U {husband(X) < —husband(X), single(X)}

I = {man(dilbert)}) as above

Note: The operator Tp is not monotonic! unibz
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Foundations of Database Systems

Problems with Minimal Models

There are similar problems for model-theoretic semantics

@ We can associate with P naturally a first-order theory ¥ p as in the
negation-free case (write rules as implications):

R(‘f) — (_‘)Rl (fl)v KRR (_‘)Rn(fn)

[a g
Vv VI (((R)Ri(@1) A A (7)) R (@) = R(T))
o Still, K € inst(sch(P)) is a model of Xp iff
Tp(K) C K (and models are not necessarily fixpoints)

@ However, multiple minimal models of ¥ p containing Z might exist
(dilbert example).

unibz
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Solution Approaches

Different kinds of proposals have been made to handle the problems above

o Give up single fixpoint/model semantics: Consider alternative fixpoints
(models), and define results by intersection, called certain semantics.
Most well-known: Stable model semantics (Gelfond & Lifschitz,
1988;1991).
Still suffers from 1.

o Constrain the syntax of programs: Consider only fragment where
negation can be “naturally” evaluated to a single minimal model.
Most well-known: semantics for stratified programs (Apt, Blair & Walker,
1988), perfect model semantics (Przymusinski, 1987).

unibz
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Solution Approaches/?2

@ Give up 2-valued semantics: Facts might be true, false or unknown
Adapt and refine the notion of immediate consequence.
Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf,
1991).
Resolves all problems 1-3

e Give up fixpoint/minimality condition: Operational definition of result.
Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

unibz
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Semi-Positive Datalog

“Easy” case: Datalog™ programs where negation
is applied only to edb relations.
@ Such programs are called semi-positive

@ For a semi-positive program,
the operator T p is monotonic if the edb-part is fixed, i.e.,
I CJ and Iledb(P) = J|edb(P) implies Tp(I) C Tp(J)

Theorem
Let P be a semi-positive datalog program and I € inst(sch(P)). Then,
@ Tp has a unique minimal fixpoint J among all I such that
Iledb(P) = J|edb(P).
© X p has a unique minimal model J among all T such that
Iledb(P) = J|edb(P).

unibz
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Semi-positive datalog can express

the transitive closure of the complement of a graph G:

neg.tc(z, y) « ~G(x.y)
neg_te(z, y) « ~G(x,2), neg-tc(z,y)

unibz
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Stratified Semantics

Intuition: For evaluating the body of a rule instance r containing ﬂR(f),
the value of the “negated” relation R(f) should be known.

@ Evaluate first R
Q if R(f) is false, then —R(%) is true,
O if R(f) is true, then —R(%) is false and the rule is not applicable.

Example

boring(chess) < —interesting(chess)
interesting(X) < difficult(X)

For I = {}, we compute the result {boring(chess)}.

Note: this introduces procedurality (which violates declarativity)!
unibz
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Dependency Graph for Datalog™ Programs

Associate with each datalog™ program P a directed graph DEP(P) = (N, E),
called dependency graph, as follows:

@ N = sch(P), i.e., the nodes are the relations

e E={(R,R)|3IreP:H(r)=RAR € B(r)},
i.e., there are edges R — R’ from the relations in rule heads
to the relations in the body
@ Mark each arc R — R’ with “*",
if R(Z) is in the head of a rule in P

—

whose body contains - R'(¥)

Remark: edb relations are often omitted in the dependency graph

unibz
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Example

P:  husband(X) < man(X), married(X).
single(X) < man(X), —husband(X).

husband  “ married

4

DEP(P): *
single o man

Definition (Stratification Principle)

fR=Ry— R — Ry —---R,_1 — R, = R such that
some R; — R;y1 is marked with “*”,
then R’ must be evaluated prior to R.

unibz
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Stratification

Definition
A stratification of a datalog program P is a partitioning

of sch(P) into nonempty, pairwise disjoint sets P; such that
(a) if Re P;, R' € P;, and R — R’ is in DEP(P), then i > j;
(b) if R € P;, R' € P;, and R — R’ is in DEP(P) marked with “*"

then ¢ > j.
Py, ..., P, are called the strata of P w.r.t. %
Definition

A datalog program P is called stratified, if it has some stratification X.
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Evaluation Order

A stratification X gives an evaluation order for the relations in P,
given I € inst(edb(P)):
© First evaluate the relations in P; (which is —-free).
= All relations R in heads of P; are defined. This yields J1 € inst(sch(F1)).

@ Evaluate P> considering relations in edb(P) and P; as edb(P:), where —R(#) is
true if R(%) is false in TU Jy;

= All relations R in heads of P» are defined. This yields J> € inst(sch(P,)).

© Evaluate P; considering relations in edb(P) and Py, ..., Pi_1 as edb(P;), where
—R(t) is true if R(t) is false in ITUJ; U---UJ;_1;

@ The result of evaluating P on I w.r.t. X, denoted Ps(I), is given by
IuJiu---uUJd,.

unibz
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Example

P ={ husband(X) + man(X), married(X)
single(X) < man(X), —husband(X) }

Stratification X:
Py, = {man, married}, P, = {husband}, P;5 = {single}
I = {man(dilbert)}:

Q Evaluate Pi:  J; ={}

@ Evaluate Pp: Jo ={}

@ Evaluate P3:  J3 = {single(dilbert)}

© Hence, Ps(I) = {man(dilbert)}, single(dilbert) }

unibz
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Formal Definition of Stratified Semantics

Let P be a stratified Datalog™ program with stratification ¥ = |J_, Pi.

@ Let P be the set of rules from P whose relations in the head are in P;, and set
edb(P;) = edb(P), edb(P;}) = rels(U;:1 P;)Uedb(P), i > 1.

@ For every I € inst(edb(P)), let I¥ =T and define

o= TR = (T 0) 2 T
o= THaY) = M(Tp0Y) 2 I
o= TR, = (TR 2 T3,

L = Tg.(I) = M(Tp (L) 2 I,
where T4 (J) = lim{T4(J)}izo with TG (J) = J and T = To(T,(J)), and
Ifp(Tq(d)) is the least fixpoint K of T such that K|edb(Q) = J|edb(Q).
@ Denote Px(I) = I3

unibz
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Formal Definition of Stratified Semantics/2

Proposition

For every i € {1,...,n},
o Ifp(Tp+ (I} )) exists,
o Ifp(Tp-(I7 ) = T%- (IZ ;) holds,
° IZ-E_1 C IiE.

Therefore, Py (I) is always well-defined.

Theorem
Ps(TI) is a minimal model K of P such that K|edb(P) = 1.

unibz
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Dilbert Example cont'd

P ={ husband(X) < man(X), married(X)
single(X) « man(X), —husband(X) }
edb(P) = {man}

Stratification X: Py = {man, married}, P, = {husband}, Ps = {single}

Q ~={}
@ P, = {husband(X) < man(X), married(X)}
© P; = {single(X) < man(X), —husband(X)}

I = {man(dilbert)}:
@ IT = {man(dilbert)}
@ 17 = {man(dilbert)}
@ 13 = {man(dilbert), single(dilbert)}
Hence, P (I) = {man(dilbert), single(dilbert)}
unil;
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Stratification Theorem

The stratification X above is not unique

o Alternative stratification X':
Py, = {man, married, husband}, P> = {single}

o Evaluation with respect to Y’ yields same result!

The choice of a particular stratification is irrelevant:

Theorem (Stratification Theorem)

Let P be a stratifiable datalog™ program. Then, for any stratifications > and
Y/ and I € inst(sch(P)), Px(I) = Py (I).

@ Thus, syntactic stratification yields semantically a canonical way of
evaluation.

o The result Py, (I) is called the perfect model or stratified model of P for 1.

Remark: Prolog features SLDNF — SLD resolution with (finite) negation as failure unibz
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Example: Railroad Network

Determine whether safe connections between locations in a railroad network

bis

clote
olfe
e/
quater

@ Cutpoint c for a and b: if ¢ fails, there is no connection between a and b
o Safe connection between a and b: no cutpoints between a and b exist

o E.g., ter is a cutpoint for olfe and semel, while quincy is not

unibz
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Example: Railroad Network/2

Relations:

link(X,Y):
linked(A, B):

): direct connection from station X to Y (edb facts)

)
connected(A, B): there is path between A and B (one or more links)

)

)

symmetric closure of link.

cutpoint(X, A, B):
circumvent (X, A, B):

each path from A to B goes through station X

there is a path between A and B not passing X
has_icut_point(A, B): there is at least one cutpoint between A and B.

safely_connected(A, B): A and B are connected with no cutpoint.

station(X): X is a railway station.

unibz
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Example: Railroad Network/3

Railroad program P:

1

2!
T3!
T4
T5:

T6:
TT.
rg:
Tr9:

T10:

: linked(A, B) + link(A, B).

linked(A, B) < link(B, A).
connected(A, B) < linked(A, B).
connected(A, B) < connected(A, C), linked(C, B).
cutpoint(X, A, B) < connected(A, B), station(X),

—circumvent(X, A, B).
circumvent(X, A, B) < linked(A, B), X # A, station(X), X # B.
circumvent(X, A, B) < circumvent(X, A, C), circumvent(X, C, B).
has_icut_point(A, B) < cutpoint(X, A, B), X # A, X # B.
safely_connected(A, B) < connected(A, B),

—has_icut_point(A, B).

station(X) < linked(X, Y).

Remark: Inequality (#) is used here as built-in. It can be easily defined in stratified manner.

W. Nutt
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Example: Railroad Network/3

DEP(P):

staﬁm,/(>\/1 inked\

czrcumvent link

has zcut_pomt wncc)ted
L‘utpomt

Aafely connected

Stratification X:

Py = {link, linked, station, circumvent, connected }
P, = {cutpoint, has_icut_point}
Py = {safely_connected} unibz
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Example: Railroad Network /4

I(link) = { (semel, bis), (bis, ter), (ter, olfe), (ter, icsi), (ter, quincy),
(quincy, semel), {quincy, clote), (quincy, mamuk), . .., (dalte, quater) }

Evaluation Px(I):

Q@ P = {link, linked, station, circumvent, connected }:
J1 = {linked(semel, bis), linked(bis, ter), linked(ter, olfe),. ..,
connected(semel, olfe), ..., circumvent(quincy, semel, bis), ...}
Q P> = {cutpoint, has_icut_point}:
Jo = {cutpoint(ter, semel, olfe), has_icut_point(semel, olfe) ...}
© P; = {safely_connected}:
J3 = {safely_connected(semel, bis), safely_connected(semel, ter)}
But, safely_connected(semel, olfe) ¢ Js

unibz

W. Nutt ODBS-FDBs 2016/2017 (24/35)



Foundations of Database Systems

Algorithm STRATIFY

Input: A datalog™ program P
Output: A stratification X for P, or “no” if none exists

Runs in polynomial time!

W. Nutt

© Construct the directed graph G := DEP(P) (=(N, E)) with markers “*";
@ For each pair (R,R’) € N x N do
if R reaches R’ via some path containing a marked arc

then E:= EU{R — R'}; mark R — R’ with “*" ;
Qi =1
@ Identify the set K of all vertices R in G s.t. no marked R — R’ isin E
@ If K = (0 and G has vertices left,

then output “no”

else output K as stratum P;;

remove all vertices in K and corresponding arcs from G;

Q@ If G has vertices left

then i:=i+ 1; goto step 4;

else stop.

unibz

ODBS-FDBs 2016/2017 (25/35)



Foundations of Database Systems

Stable Models Semantics

@ lIdea: Try to construct a (minimal) fixpoint by iteration from input.
If the construction succeeds, the result is the semantics.

@ Problem: Application of rules might be compromised.

Example
P={p(a) < —pla),  q(0) <pla),  pla) < q(b)}
(edb(P) is void, thus I is immaterial and omitted)
@ Tp has the least fixpoint {p(a), q(b)}

@ It is iteratively constructed T = {p(a), q(b)}
@ p(a) is included into T} by the first rule, since p(a) ¢ TS = 0.

@ This compromises the rule application, and p(a) is not “foundedly” derived!

unibz
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Fixed Evaluation of Negation

Observation: T p is not monotonic.
Solution: Keep negation throughout fixpoint-iteration fixed.

o Evaluate negation w.r.t. a fixed candidate fixpoint model J

@ Introduce for datalog™ program and J € inst(sch(P)) a new immediate
consequence operator Tp j:

unibz
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Immediate Consequences under Fixed Negation

Definition
Given a datalog™ program P and J,K € inst(sch(P)),
a fact R(f) is an immediate consequence for K and P under negation J,
if either
o R € edb(P) and R(t) € K, or
@ there exists some ground instance r of a rule in P such that
° H(T’) = R(l?),
o BT(r) CK, and
o BT (r)nJ =10
(that is, evaluate “—=" under J instead of K).

unibz
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Immediate Consequences under Fixed Negation /2
Definition
For any datalog™ program P and J,K € inst(sch(P)), let

Tpiy(K)={A]| Ais an immediate consequence for K and P
under negation J}

Notice:
e Tp(K) coincides with T p k (K)

e Tpj is a monotonic operator, hence has for each K € inst(sch(P)) a least
fixpoint containing K, denoted /fp(T p 3(K))

e Ifp(Tp 5(I)) coincides with I on edb(P) and
is the limit T% 5(I) of the sequence

{T% (1) }izo,

where T9 ;(T) = T and T35 (I) = Tp (T 4(1)). unibz
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Stable Models

Using Tp j, stable models are defined by requiring
that J is reproduced by the program:

Definition

Let P be a datalog™ program P and I € inst(edb(P)).

Then, a stable model for P and I is any J € inst(sch(P)) such that
Q Jledb(P) =1, and
@ J = If(Tpy(I).

Notice: Monotonicity of T p 5 ensures that at no point in the construction of
Ifo(Tp.5)(I) using fixpoint iteration from I, the application of a rule can be
compromised later.

unibz
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Example

Let
P={ pla) <=pla),  qb) <pla),  pla)<qb) }
(edb(P) is void, thus I is immaterial and omitted)

o Take J = {p(a),q(b)}. Then

o Thy=10
® Thus Ifp(Tpy3) =0 #J.
@ Hence, the fixpoint J of T'p is refuted.
@ For P, no stable model exists; thus, it may be regarded as “inconsistent”.

unibz
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Nondeterminism

@ Problem: A datalog program may have multiple stable models:

P=/{ single(X) < man(X), ~husband(X)
husband(X) < man(X), —single(X) }

I = {man(dilbert)}

e J; = {man(dilbert), single(dilbert)} is a stable model:
o T% ;5 (I) = {man(dilbert)}
o Tp; (I) = {man(dilbert), single(dilbert)} (apply 2nd rule)
° T%,Jl(l) = {man(dilbert), single(dilbert)} = T% 5 (I)

o Similarly, Jo = {man(dilbert), husband(dilbert)} is a stable model
(symmetry)

unibz
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Stable Model Semantics — Definition

Solution: Define stable model semantics of P as the intersection of all stable
models (certain semantics):

Denote for a datalog™ program P and I € inst(edb(P)) by SM(P,I) the set of
all stable models for I and P.

Definition
The stable models semantics of a datalog™ program P for I € inst(edb(P)),
denoted Py, (I), is given by

by _ [ NSMPD), i SM(PT) 0,
sm (L) = B(P,1), otherwise.

unibz
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Examples

Example

P={ single(X) < man(X), ~husband(X)
husband(X) + man(X), —single(X) }

P ({man(dilbert)}) = {man(dilbert)}

Example

P ={p(a) < =p(a),  q(b) «pla), pla)<+ q(b)}
Pin(0) = {p(a), p(b), q(a),q(b)} = B(P,1).

unibz
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Some Properties

Proposition
Each K € SM(P,I) is a minimal model K of P such that K|edb(P) = 1.

Proposition
Each K € SM(P,I) is a minimal fixpoint K of Tp such that K|edb(P) = 1.

Theorem

If P is a stratified program, than for every I € edb(P), Psm(I) = Patrat(I).
Thus, stable model semantics extends stratified semantics to a larger class of
programs

Evaluation of stable model semantics is intractable: Deciding whether
R(C) € Psy,(I) for given R(E) and I (while P is fixed) is coNP-complete. —

unibz
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