Ontology and Database Systems: Foundations of Database Systems

Part 5: Datalog

Werner Nutt

Faculty of Computer Science European Master in Computational Logic

A.Y. 2016/2017

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Motivation

- Relational Calculus and Relational Algebra were considered to be "the" database languages for a long time
- Codd: A query language is "complete," if it yields Relational Calculus
- However, Relational Calculus misses an important feature: recursion
- Example: A metro database with relation links:line, station, nextstation
 - What stations are reachable from station "Odeon"?
 - Can we go from Odeon to Tuileries?
 - etc.
- It can be proved: such queries cannot be expressed in Relational Calculus
- This motivated a logic-programming extension to conjunctive queries: datalog

Example: Metro Database Instance

link	line	station	nextstation	
	4	St. Germain	Odeon	
	4	Odeon	St. Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvres	
	1	Louvres	Palais Royal	
	1	Palais-Royal	Tuileries	
	1	Tuileries	Concorde	

Datalog program for the first query:

```
\begin{array}{lcl} \texttt{reach}(X,X) & \leftarrow & \texttt{link}(L,X,Y) \\ \texttt{reach}(X,X) & \leftarrow & \texttt{link}(L,Y,X) \\ \texttt{reach}(X,Y) & \leftarrow & \texttt{link}(L,X,Z),\texttt{reach}(Z,Y) \\ \texttt{answer}(X) & \leftarrow & \texttt{reach}(\text{`Odeon'},X) \end{array}
```

- Note: this is a recursive definition
- Intuitively, if the part right of "←" is true, the rule "fires" and the atom left of "←" is concluded.

Exercise

Write the following queries in datalog:

- Which stations can be reached from Chatelet, using exactly one line? (This excludes staying at Chatelet).
- Which stations can be reached from one another using exactly one line?
- Which stations can be reached from one another?
 (Check whether the query in the example is correct!)
- Which stations are terminal stops?

The Datalog Language

- Datalog is akin to Logic Programming
- The basic language (considered next) has many extensions
- There exist several approaches to defining the semantics:
 - Model-theoretic approach: View rules as logical sentences, which state the query result
 - Operational (fixpoint) approach: Obtain query result by applying an inference procedure, until a fixpoint is reached
 - Proof-theoretic approach: Obtain proofs of facts in the query result, following a proof calculus (based on resolution)

Datalog vs. Logic Programming

Although datalog is akin to Logic Programming, there are important differences:

- There are no functions symbols in datalog
 → no unbounded data structures, such as lists, are supported
- Datalog has a purely declarative semantics
 - ightsquigarrow In a datalog program,
 - the order of clauses is irrelevant
 - the order of atoms in a rule body is irrelevant
- Datalog distinguishes between
 - database relations ("extensional database", edb) and
 - derived relations ("intensional database", idb)

Syntax of "plain datalog", or "datalog"

Definition

A datalog rule r is an expression of the form

$$R_0(\bar{x}_0) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n) \tag{1}$$

where

- n > 0,
- R_0, \ldots, R_n are relations names,
- $\bar{x}_0, \dots, \bar{x}_n$ are tuples of variables and constants (from **dom**), and
- every variable in \bar{x}_0 occurs in $\bar{x}_1, \ldots, \bar{x}_n$ ("safety")

Remark

- The *head* of r, denoted H(r), is $R_0(\bar{x}_0)$
- The body of r, denoted B(r), is $\{R_1(\bar{x}_1), \ldots, R_n(\bar{x}_n)\}$
- The rule symbol "←" is often also written as ":-"

W. Nutt ODBS-FDBs 2016/2017 (6

Datalog Programs

Definition

A datalog program is a finite set of datalog rules.

Let P be a datalog program.

- ullet An extensional relation of P is a relation occurring only in rule bodies of P
- ullet An intensional relation of P is a relation occurring in the head of some rule in P
- The extensional schema of P, edb(P), consists of all extensional relations of P
- The intensional schema of P, idb(P), consists of all intensional relations of P
- The schema of P, sch(P), is the union of edb(P) and idb(P).

The Metro Example /1

Datalog program P on the metro database schema (w/o integrity constraints)

$$\mathcal{M} = \{ \texttt{link}(\texttt{line}, \, \texttt{station}, \, \texttt{nextstation}) \} :$$

$$\begin{split} & \texttt{reach}(\textbf{X}, \textbf{X}) & \leftarrow & \texttt{link}(\textbf{L}, \textbf{X}, \textbf{Y}) \\ & \texttt{reach}(\textbf{X}, \textbf{X}) & \leftarrow & \texttt{link}(\textbf{L}, \textbf{Y}, \textbf{X}) \\ & \texttt{reach}(\textbf{X}, \textbf{Y}) & \leftarrow & \texttt{link}(\textbf{L}, \textbf{X}, \textbf{Z}), \texttt{reach}(\textbf{Z}, \textbf{Y}) \\ & \texttt{answer}(\textbf{X}) & \leftarrow & \texttt{reach}(\text{'Odeon', X}) \end{split}$$

Here,

$$\begin{array}{lcl} \mathit{edb}(P) & = & \{\mathtt{link}\} & (=\mathcal{M}), \\ \mathit{idb}(P) & = & \{\mathtt{reach},\mathtt{answer}\}, \\ \mathit{sch}(P) & = & \{\mathtt{link},\mathtt{reach},\mathtt{answer}\} \end{array}$$

Datalog Syntax (cntd)

- The set of constants occurring in program P is denoted as adom(P)
- ullet The active domain of P with respect to an instance ${f I}$ is defined as

$$adom(P, \mathbf{I}) := adom(P) \cup adom(\mathbf{I}),$$

that is, as the set of constants occurring in P and $\mathbf I$

Definition (Rule Instantiation)

Let $\alpha \colon \mathit{var}(r) \cup \mathbf{dom} \to \mathbf{dom}$ be an assignment for the variables in a rule r of form (1). Then the *instantiation* of r with α , denoted $\alpha(r)$, is the rule

$$R_0(\alpha(\bar{x}_0)) \leftarrow R_1(\alpha(\bar{x}_1)), \dots, R_n(\alpha(\bar{x}_n)),$$

which results from replacing each variable x with $\alpha(x)$.

The Metro Example/2

- For the datalog program P above, we have that $adom(P) = \{ Odeon \}$
- We consider the database instance I:

link	line	station	nextstation	
	4	St. Germain	Odeon	
	4	Odeon	St. Michel	
	4	St. Michel	Chatelet	
	1	Chatelet	Louvre	
	1	Louvre	Palais-Royal	
	1	Palais-Royal	Tuileries	
	1	Tuileries	Concorde	

Then $adom(\mathbf{I}) = \{4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres, Palais-Royal, Tuileries, Concorde\}$

• Also $adom(P, \mathbf{I}) = adom(\mathbf{I})$

The Metro Example/3

The rule

is an instantiation of the rule

$$\mathtt{reach}(\mathtt{X},\mathtt{Y}) \quad \leftarrow \quad \mathtt{link}(\mathtt{L},\mathtt{X},\mathtt{Z}),\mathtt{reach}(\mathtt{Z},\mathtt{Y})$$

(take
$$\alpha({\tt X})={\tt St.Germain},\ \alpha({\tt L})={\tt Louvre},\ \alpha({\tt Y})={\tt Odeon},$$
 $\alpha({\tt Z})={\tt Concorde})$

W. Nutt ODBS-FDBs 2016/2017 (11/47)

Datalog: Model-Theoretic Semantics

General Idea:

- We view a program as a set of first-order sentences
- Given an instance \mathbf{I} of edb(P), the result of P is a database instance of sch(P) that extends \mathbf{I} and satisfies the sentences (or, is a model of the sentences)
- There can be many models
- The intended answer is specified by particular models
- These particular models are selected by "external" conditions

Logical Theory Σ_P

• To every datalog rule r of the form $R_0(\bar{x}_0) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$, with variables x_1, \dots, x_m , we associate the logical sentence $\sigma(r)$:

$$\forall x_1, \dots \forall x_m \left(R_1(\bar{x}_1) \wedge \dots \wedge R_n(\bar{x}_n) \to R_0(\bar{x}_0) \right)$$

• To a program P, we associate the set of sentences $\Sigma_P = \{\sigma(r) \mid r \in P\}$

Definition

Let P be a datalog program and \mathbf{I} an instance of edb(P). Then,

- A model of P is an instance of sch(P) that satisfies Σ_P
- We compare models wrt set inclusion "⊆" (in the Logic Programming perspective)
- The semantics of P on input I, denoted P(I), is the least model of P containing I, if it exists

unibz

Example

For program ${\cal P}$ and instance ${\bf I}$ of the Metro Example, the least model is:

link	line	station	nextstation	reach		
	4	St. Germain	Odeon		St. Germain	St. Germain
	4	Odeon	St. Michel		Odeon	Odeon
	4	St. Michel	Chatelet			
	1	Chatelet	Louvres		Concorde	Concorde
	1	Louvres	Palais-Royal		St. Germain	Odeon
	1	Palais-Royal	Tuileries		St. Germain	St.Michel
	1	Tuileries	Concorde		St. Germain	Chatelet
					St. Germain	Louvre

answer	
	Odeon
	St. Michel
	Chatelet
	Louvre
	Palais-Royal
	Tuileries
	Concorde

Questions

- lacktriangledown Is the semantics $P(\mathbf{I})$ well-defined for every input instance \mathbf{I} ?
- ② How can one compute $P(\mathbf{I})$?

Observation: For any I, there is a model of P containing I

• Let $\mathbf{B}(P, \mathbf{I})$ be the instance of $\mathit{sch}(P)$ such that

$$\mathbf{B}(P,\mathbf{I})(R) = \left\{ \begin{array}{ll} \mathbf{I}(R) & \text{for each } R \in \mathit{edb}(P) \\ \mathit{adom}(P,\mathbf{I})^{\mathit{ary}(R)} & \text{for each } R \in \mathit{idb}(P) \end{array} \right.$$

- Then: $\mathbf{B}(P, \mathbf{I})$ is a model of P containing \mathbf{I} $\Rightarrow P(\mathbf{I})$ is a subset of $\mathbf{B}(P, \mathbf{I})$ (if it exists)
- ullet Naive algorithm: explore all subsets of ${f B}(P,{f I})$

W. Nutt ODBS-FDBs 2016/2017 (15/47)

Elementary Properties of $P(\mathbf{I})$

Let P be a datalog program, ${\bf I}$ an instance of edb(P), and ${\cal M}({\bf I})$ the set of all models of P containing ${\bf I}$.

Theorem

The intersection $\bigcap_{M \in \mathcal{M}(\mathbf{I})} M$ is a model of P.

Corollary

- $P(\mathbf{I}) = \bigcap_{M \in \mathcal{M}(\mathbf{I})} M$
- ② $adom(P(\mathbf{I})) \subseteq adom(P, \mathbf{I})$, that is, no new values appear
- $P(\mathbf{I})(R) = \mathbf{I}(R),$ for each $R \in edb(P)$

Consequences:

- $P(\mathbf{I})$ is well-defined for every \mathbf{I}
- If P and \mathbf{I} are finite, the $P(\mathbf{I})$ is finite

Why Choose the Least Model?

There are two reasons to choose the least model containing I:

- The Closed World Assumption:
 - If a fact $R(\bar{c})$ is not true in all models of a database ${\bf I}$, then infer that $R(\bar{c})$ is false
 - This amounts to considering I as complete
 - ... which is customary in database practice
- The relationship to Logic Programming:
 - Datalog should desirably match Logic Programming (seamless integration)
 - Logic Programming builds on the minimal model semantics

Relating Datalog to Logic Programming

- A logic program makes no distinction between edb and idb
- A datalog program P and an instance ${\bf I}$ of ${\it edb}(P)$ can be mapped to the logic program

$$\mathcal{P}(P, \mathbf{I}) = P \cup \mathbf{I}$$

(where ${f I}$ is viewed as a set of atoms in the Logic Programming perspective)

Correspondingly, we define the logical theory

$$\Sigma_{P,\mathbf{I}} = \Sigma_P \cup \mathbf{I}$$

- The semantics of the logic program $\mathcal{P} = \mathcal{P}(P, \mathbf{I})$ is defined in terms of Herbrand interpretations of the language induced by \mathcal{P} :
 - The domain of discourse is formed by the constants occurring in ${\mathcal P}$
 - Each constant occurring in ${\mathcal P}$ is interpreted by itself

W. Nutt ODBS-FDBs 2016/2017 (18/47)

Herbrand Interpretations of Logic Programs

Given a rule r, we denote by Const(r) the set of all constants in r

Definition

For a (function-free) logic program \mathcal{P} , we define

• the Herbrand universe of \mathcal{P} , by

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} \mathit{Const}(r)$$

ullet the *Herbrand base* of \mathcal{P} , by

$$\mathbf{HB}(\mathcal{P}) = \{R(c_1, \dots, c_n) \mid R \text{ is a relation in } \mathcal{P}, \\ c_1, \dots, c_n \in \mathbf{HU}(\mathcal{P}), \text{ and } \mathit{ary}(R) = n\}$$

W. Nutt ODBS-FDBs 2016/2017 (19/47)

Example

```
\begin{split} \mathcal{P} &= \{ & \text{arc}(\textbf{a},\textbf{b}). \\ & \text{arc}(\textbf{b},\textbf{c}). \\ & \text{reachable}(\textbf{a}). \\ & \text{reachable}(\textbf{Y}) \leftarrow \text{arc}(\textbf{X},\textbf{Y}), \text{reachable}(\textbf{X}). \; \} \end{split} \begin{aligned} & \textbf{HU}(\mathcal{P}) &= & \{\textbf{a},\textbf{b},\textbf{c}\} \\ & \textbf{HB}(\mathcal{P}) &= & \{\text{arc}(\textbf{a},\textbf{a}), \; \text{arc}(\textbf{a},\textbf{b}), \; \text{arc}(\textbf{a},\textbf{c}), \\ & & \text{arc}(\textbf{b},\textbf{a}), \; \text{arc}(\textbf{b},\textbf{b}), \; \text{arc}(\textbf{b},\textbf{c}), \\ & & \text{arc}(\textbf{c},\textbf{a}), \; \text{arc}(\textbf{c},\textbf{b}), \; \text{arc}(\textbf{c},\textbf{c}), \\ & & \text{reachable}(\textbf{a}), \; \text{reachable}(\textbf{b}), \; \text{reachable}(\textbf{c}) \} \end{aligned}
```


Grounding

- A rule r' is a ground instance of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, if $r' = \alpha(r)$ for an assignment α such that $\alpha(x) \in \mathbf{HU}(\mathcal{P})$ for each $x \in \mathit{var}(r)$
- The grounding of a rule r with respect to $\mathbf{HU}(\mathcal{P})$, denoted $Ground_{\mathcal{P}}(r)$, is the set of all ground instances of r wrt $\mathbf{HU}(\mathcal{P})$
- ullet The grounding of a logic program ${\mathcal P}$ is

$$Ground(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} Ground_{\mathcal{P}}(r)$$

W. Nutt ODBS-FDBs 2016/2017 (21/47)

Example

```
\begin{aligned} \textit{Ground}(\mathcal{P}) &= \{ \text{arc}(\textbf{a}, \textbf{b}). \ \text{arc}(\textbf{b}, \textbf{c}). \ \text{reachable}(\textbf{a}). \\ &\quad \text{reachable}(\textbf{a}) \leftarrow \text{arc}(\textbf{a}, \textbf{a}), \text{reachable}(\textbf{a}). \\ &\quad \text{reachable}(\textbf{b}) \leftarrow \text{arc}(\textbf{a}, \textbf{b}), \text{reachable}(\textbf{a}). \\ &\quad \text{reachable}(\textbf{c}) \leftarrow \text{arc}(\textbf{a}, \textbf{c}), \text{reachable}(\textbf{a}). \\ &\quad \text{reachable}(\textbf{a}) \leftarrow \text{arc}(\textbf{b}, \textbf{a}), \text{reachable}(\textbf{b}). \\ &\quad \text{reachable}(\textbf{b}) \leftarrow \text{arc}(\textbf{b}, \textbf{b}), \text{reachable}(\textbf{b}). \\ &\quad \text{reachable}(\textbf{c}) \leftarrow \text{arc}(\textbf{b}, \textbf{c}), \text{reachable}(\textbf{b}). \\ &\quad \text{reachable}(\textbf{a}) \leftarrow \text{arc}(\textbf{c}, \textbf{a}), \text{reachable}(\textbf{c}). \\ &\quad \text{reachable}(\textbf{c}) \leftarrow \text{arc}(\textbf{c}, \textbf{b}), \text{reachable}(\textbf{c}). \\ &\quad \text{reachable}(\textbf{c}) \leftarrow \text{arc}(\textbf{c}, \textbf{c}), \text{reachable}(\textbf{c}). \\ \end{aligned}
```


Herbrand Models

- A Herbrand-interpretation I of \mathcal{P} is any subset $I \subseteq \mathbf{HB}(\mathcal{P})$
- A Herbrand-model of $\mathcal P$ is a Herbrand-interpretation that satisfies all sentences in $\Sigma_{P,\mathbf I}$
- Equivalently, $M \subseteq \mathbf{HB}(\mathcal{P})$ is a Herbrand model if for all $r \in \mathit{Ground}(\mathcal{P})$ such that $B(r) \subseteq M$ we have that $H(r) \subseteq M$

W. Nutt ODBS-FDBs 2016/2017 (23/47)

Example

The Herbrand models of program ${\mathcal P}$ above are exactly the following:

- $\begin{aligned} \bullet \ M_1 = \{ \ \text{arc(a,b)}, \ \text{arc(b,c)}, \\ \text{reachable(a)}, \ \text{reachable(b)}, \ \text{reachable(c)} \ \end{aligned}$
- $M_2 = \mathbf{HB}(\mathcal{P})$
- ullet every interpretation M such that $M_1\subseteq M\subseteq M_2$ and no others.

W. Nutt ODBS-FDBs 2016/2017 (24/47)

Logic Programming Semantics

Proposition

 $\mathbf{HB}(\mathcal{P})$ is always a model of \mathcal{P}

Theorem

For every logic program there exists a least Herbrand model (wrt "

").

For a program \mathcal{P} , this model is denoted $\mathit{MM}(\mathcal{P})$ (for "minimal model"). The model $\mathit{MM}(\mathcal{P})$ is the semantics of \mathcal{P} .

Theorem (Datalog ↔ Logic Programming))

Let P be a datalog program and \mathbf{I} be an instance of edb(P). Then,

$$P(\mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I}))$$

.....2

W. Nutt ODBS-FDBs 2016/2017 (25/47

Consequences

Results and techniques for Logic Programming can be exploited for datalog.

For example,

- proof procedures for Logic Programming (e.g., SLD resolution) can be applied to datalog (with some caveats, regarding for instance termination)
- datalog can be reduced by "grounding" to propositional logic programs

Fixpoint Semantics

Another view:

"If all facts in ${\bf I}$ hold, which other facts must hold after firing the rules in P?"

Approach:

- ullet Define an immediate consequence operator $\mathbf{T}_P(\mathbf{K})$ on db instances \mathbf{K}
- ullet Start with $\mathbf{K} = \mathbf{I}$
- ullet Apply \mathbf{T}_P to obtain a new instance: $\mathbf{K}_{\mathsf{new}} := \mathbf{T}_P(\mathbf{K}) = \mathbf{I} \cup \mathsf{new}$ facts
- Iterate until nothing new can be produced
- The result yields the semantics

Immediate Consequence Operator

Let P be a datalog program and \mathbf{K} be a database instance of $\mathit{sch}(P)$.

A fact $R(\bar{t})$ is an *immediate* consequence for ${\bf K}$ and P, if either

- $R \in edb(P)$ and $R(\bar{t}) \in \mathbf{K}$, or
- there exists a ground instance r of a rule in P such that $H(r)=R(\bar{t})$ and $B(r)\subseteq \mathbf{K}.$

Definition (Immediate Consequence Operator)

The immediate consequence operator of a datalog program P is the mapping

$$\mathbf{T}_P \colon \mathit{inst}(\mathit{sch}(P)) \to \mathit{inst}(\mathit{sch}(P))$$

where

$$\mathbf{T}_P(\mathbf{K}) = \{A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P\}.$$

W. Nutt ODBS-FDBs 2016/2017 (28/47)

Example

```
Consider
```

 $P = \{ \text{ reachable(a)},$

```
where edb(P) = \{arc\} and idb(P) = \{reachable\}. Let \begin{split} \mathbf{I} &= \mathbf{K}_1 = \{arc(a,b),\ arc(b,c)\} \\ &\quad \mathbf{K}_2 = \{arc(a,b),\ arc(b,c),\ reachable(a)\} \\ &\quad \mathbf{K}_3 = \{arc(a,b),\ arc(b,c),\ reachable(a),\ reachable(b)\} \\ &\quad \mathbf{K}_4 = \{arc(a,b),\ arc(b,c),\ reachable(a),\ reachable(b),\ reachable(c)\} \end{split}
```

 $reachable(Y) \leftarrow arc(X, Y), reachable(X)$

W. Nutt ODBS-FDBs 2016/2017 (29/47)

Example (cntd)

Then,

```
\begin{split} \mathbf{T}_P(\mathbf{K}_1) &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \ \texttt{reachable}(\mathtt{a}) \} \ = \ \mathbf{K}_2 \\ \mathbf{T}_P(\mathbf{K}_2) &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \ \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}) \} \ = \ \mathbf{K}_3 \\ \mathbf{T}_P(\mathbf{K}_3) &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \ \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}), \ \texttt{reachable}(\mathtt{c}) \} \ = \ \mathbf{K}_4 \\ \mathbf{T}_P(\mathbf{K}_4) &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \ \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}), \ \texttt{reachable}(\mathtt{c}) \} \ = \ \mathbf{K}_4 \end{split}
```

Thus, \mathbf{K}_4 is a *fixpoint* of \mathbf{T}_P .

Definition

 \mathbf{K} is a *fixpoint* of operator \mathbf{T}_P if $\mathbf{T}_P(\mathbf{K}) = \mathbf{K}$

W. Nutt ODBS-FDBs 2016/2017 (30/47)

Properties

Proposition

Let P be a datalog program.

lacktriangledown The operator \mathbf{T}_P is monotonic, that is,

$$\mathbf{K} \subseteq \mathbf{K}'$$
 implies $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{T}_P(\mathbf{K}')$;

② For all $\mathbf{K} \in \mathit{inst}(\mathit{sch}(P))$, we have:

 \mathbf{K} is a model of Σ_P if and only if $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$;

3 If $T_P(K) = K$ (i.e., K is a fixpoint), then K is a model of Σ_P .

Note: The converse of 3. does not hold in general.

W. Nutt ODBS-FDBs 2016/2017 (31/47)

Datalog Semantics via Least Fixpoint

The semantics of P on a database instance \mathbf{I} of edb(P) is a special fixpoint:

Theorem

Let P be a datalog program and \mathbf{I} be a database instance. Then

- **1** \mathbf{T}_P has a least (wrt " \subseteq ") fixpoint containing \mathbf{I} , denoted $\mathit{lfp}(P, \mathbf{I})$.

Constructive definition of $P(\mathbf{I})$ by fixpoint iteration

Proof (of Claim 2, first equality, sketch).

Let $M_1 = \mathit{lfp}(P, \mathbf{I})$ and $M_2 = \mathit{MM}(\mathcal{P}(P, \mathbf{I}))$.

Since M_1 is a fixpoint of \mathbf{T}_P , it is a model of Σ_P , and since it contains \mathbf{I} it is a model of $\mathcal{P}(P,\mathbf{I})$. Hence, $M_2\subseteq M_1$. Since M_2 is a model of $\mathcal{P}(P,\mathbf{I})$, it holds that $\mathbf{T}_P(M_2)\subseteq M_2$. Note that for every model M of $\mathcal{P}(P,\mathbf{I})$ we have, due to the monotonicity of \mathbf{T}_P , that $\mathbf{T}_P(M)$ is model. Hence, $\mathbf{T}_P(M_2)=M_2$, since M_2 is a minimal model. This implies that M_2 is a fixpoint, hence $M_1\subseteq M_2$.

Fixpoint Iteration

For a datalog program P and an instance \mathbf{I} , we define the sequence $(\mathbf{I}_i)_{i\geq 0}$ by

$$\mathbf{I}_0 = \mathbf{I}$$

 $\mathbf{I}_i = \mathbf{T}_P(\mathbf{I}_{i-1})$ for $i > 0$.

We observe:

- ullet By monotoncity of \mathbf{T}_P , we have $\mathbf{I}_0 \subseteq \mathbf{I}_1 \subseteq \mathbf{I}_2 \subseteq \cdots \subseteq \mathbf{I}_i \subseteq \mathbf{I}_{i+1} \subseteq \cdots$
- For every $i \geq 0$, we have $\mathbf{I}_i \subseteq \mathbf{B}(P, \mathbf{I})$
- Hence, for some integer $n \leq |\mathbf{B}(P,\mathbf{I})|$, we have $\mathbf{I}_{n+1} = \mathbf{I}_n$ (=: $\mathbf{T}_P^{\omega}(\mathbf{I})$)
- It holds that $\mathbf{T}_P^{\omega}(\mathbf{I}) = \mathit{lfp}(P, \mathbf{I}) = P(\mathbf{I}).$

This can be readily implemented by an algorithm.

W. Nutt ODBS-FDBs 2016/2017 (33/47)

Example

$$\begin{split} P &= \{\, \texttt{reachable(a)}\,, \\ &\quad \texttt{reachable(Y)} \leftarrow \texttt{arc(X,Y)}, \texttt{reachable(X)}\,\} \\ \mathbf{I} &= \{\texttt{arc(a,b)}, \ \texttt{arc(b,c)}\} \end{split}$$

Then,

$$\begin{split} \mathbf{I}_0 &= \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}) \} \\ \mathbf{I}_1 &= \mathbf{T}_P^1(\mathbf{I}) = \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \texttt{reachable}(\mathtt{a}) \} \\ \mathbf{I}_2 &= \mathbf{T}_P^2(\mathbf{I}) = \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}) \} \\ \mathbf{I}_3 &= \mathbf{T}_P^3(\mathbf{I}) = \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}), \ \texttt{reachable}(\mathtt{c}) \} \\ \mathbf{I}_4 &= \mathbf{T}_P^4(\mathbf{I}) = \{ \texttt{arc}(\mathtt{a},\mathtt{b}), \ \texttt{arc}(\mathtt{b},\mathtt{c}), \texttt{reachable}(\mathtt{a}), \ \texttt{reachable}(\mathtt{b}), \ \texttt{reachable}(\mathtt{c}) \} \\ &= \mathbf{T}_P^3(\mathbf{I}) \end{split}$$

Thus,
$$\mathbf{T}_P^{\omega}(\mathbf{I}) = \mathit{lfp}(P, \mathbf{I}) = \mathbf{I}_4.$$

W. Nutt ODBS-FDBs 2016/2017 (34/47)

Excursion: Fixpoint Theory

- Evaluating a datalog program P on \mathbf{I} amounts to evaluating the logic program $\mathcal{P}(P, \mathbf{I})$
- For logic programs, fixpoint semantics is defined by appeal to fixpoint theory
- This provides another possibility to define semantics of datalog programs

W. Nutt ODBS-FDBs 2016/2017 (35/47)

Excursion: Fixpoint Theory/2

- A complete lattice is a partially ordered set (U, \leq) such that each subset $V \subseteq U$ has a least upper bound sup(V) and a greatest lower bound inf(V), respectively.
- An operator $T \colon U \to U$ is
 - monotone, if for every $x, y \in U$ it holds that $x \leq y$ implies $T(x) \leq T(y)$
 - continuous, if $T(\sup(V)) = \sup\{\{T(x) \mid x \in V\} \text{ for every } V \subseteq U.$

Notice: Continuous operators are monotone Monotone and continuous operators have nice fixpoint properties

Fixpoint Theorems of Knaster-Tarski and Kleene

Theorem

Every monotone operator T on a complete lattice (U, \leq) has a least fixpoint $\mathit{lfp}(T)$, and $\mathit{lfp}(T) = \mathit{inf}(\{x \in U \mid T(x) \leq x\})$.

A stronger theorem holds for continuous operators.

Theorem

Every continuous operator T on a complete lattice (U,\leq) has a least fixpoint, and $\mathit{lfp}(T) = \mathit{sup}(\{T^i \mid i \geq 0\})$, where $T^0 = \mathit{inf}(U)$ and $T^{i+1} = T(T^i)$, for all $i \geq 0$.

Notation: $T^{\infty} = sup(\{T^i \mid i \geq 0\}).$

- Finite convergence: $T^k = T^{k-1}$ for some $k \Rightarrow T^\infty = T^k$
- A weaker form of Kleene's theorem holds for all monotone operators (transfinite sequence T^i).

W. Nutt ODBS-FDBs 2016/2017 (37/47)

Applying Fixpoint Theory

- For a logic program \mathcal{P} , the power set lattice $(P(\mathbf{HB}(\mathcal{P})), \subseteq)$ over the Herbrand base $\mathbf{HB}(\mathcal{P})$ is a complete lattice.
- We can associate with $\mathcal P$ an immediate consequence operator $T_{\mathcal P}$ on $\mathbf{HB}(\mathcal P)$ such that $T_{\mathcal P}(I)=\{H(r)\mid r\in \mathit{Ground}(\mathcal P), B(r)\subseteq I\}$
- $T_{\mathcal{P}}$ is monotonic (in fact, continuous)
- ullet Thus, $T_{\mathcal{P}}$ has the least fixpoint $\mathit{lfp}(T_{\mathcal{P}})$. It coincides with $T_{\mathcal{P}}^{\infty}$ and $\mathit{MM}(\mathcal{P})$

Theorem

Theorem. Given a datalog program P and a database instance \mathbf{I} ,

$$P(\mathbf{I}) = \mathit{lfp}(T_{\mathcal{P}(P, \mathbf{I})}) = T^{\infty}_{\mathcal{P}(P\mathbf{I})}$$

Remark: Application of fixpoint theory is primarily of interest for infinite sets

W. Nutt ODBS-FDBs 2016/2017 (38/47)

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on $\mathbf I$ is given by the set of facts which can be *proved* from P and $\mathbf I$.

Definition (Proof tree)

A proof tree for a fact A from \mathbf{I} and P is a labeled finite tree T such that

- each vertex of T is labeled by a fact
- ullet the root of T is labeled by A
- ullet each leaf of T is labeled by a fact in ${f I}$
- if a non-leaf of T is labeled with A_1 and its children are labeled with A_2,\ldots,A_n , then there exists a ground instance r of a rule in P such that $H(r)=A_1$ and $B(r)=\{A_2,\ldots,A_n\}$

W. Nutt ODBS-FDBs 2016/2017 (39/47)

Example (Same Generation)

Let

$$P = \{r_1 \colon \texttt{sgc}(\texttt{X}, \texttt{X}) \leftarrow \texttt{person}(\texttt{X})$$

$$r_2 \colon \texttt{sgc}(\texttt{X}, \texttt{Y}) \leftarrow \texttt{par}(\texttt{X}, \texttt{X}1), \texttt{sgc}(\texttt{X}1, \texttt{Y}1), \texttt{par}(\texttt{Y}, \texttt{Y}1) \}$$
 where $edb(P) = \{\texttt{person}, \texttt{par}\}$ and $idb(P) = \{\texttt{sgc}\}$

Consider I as follows:

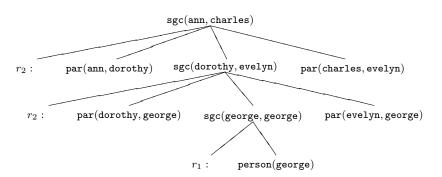
$$\begin{split} \mathbf{I}(\texttt{person}) = \{\langle \texttt{ann} \rangle, \; \langle \texttt{bertrand} \rangle, \; \langle \texttt{charles} \rangle, \langle \texttt{dorothy} \rangle, \\ \langle \texttt{evelyn} \rangle, \langle \texttt{fred} \rangle, \; \langle \texttt{george} \rangle, \; \langle \texttt{hilary} \rangle \} \end{split}$$

$$\mathbf{I}(\mathtt{par}) = \{ \langle \mathtt{dorothy}, \mathtt{george} \rangle, \ \langle \mathtt{evelyn}, \mathtt{george} \rangle, \ \langle \mathtt{bertrand}, \mathtt{dorothy} \rangle, \\ \langle \mathtt{ann}, \mathtt{dorothy} \rangle, \ \langle \mathtt{hilary}, \mathtt{ann} \rangle, \ \langle \mathtt{charles}, \mathtt{evelyn} \rangle \}.$$

W. Nutt ODBS-FDBs 2016/2017 (40/47)

Example (Same Generation)/2

Proof tree for A = sgc(ann, charles) from ${\bf I}$ and P:



W. Nutt ODBS-FDBs 2016/2017 (41/47)

Proof Tree Construction

There are different ways to construct a proof tree for A from P and I:

- Bottom Up construction: From leaves to root Intimately related to fixpoint approach
 - Define $S \vdash_P B$ to prove fact B from facts S if $B \in S$ or by a rule in P
 - Give $S = \mathbf{I}$ for granted
- Top Down construction: From root to leaves
 In Logic Programming view, consider program $\mathcal{P}(P, \mathbf{I})$.
 - ullet This amounts to a set of logical sentences $H_{\mathcal{P}(P,\mathbf{I})}$ of the form

$$\forall x_1 \cdots \forall x_m (R_1(\bar{x}_1) \vee \neg R_2(\bar{x}_2) \vee \neg R_3(\bar{x}_3) \vee \cdots \vee \neg R_n(\bar{x}_n))$$

• Prove that $A = R(\bar{t})$ is a logical consequence via resolution refutation, that is, that $H_{\mathcal{P}(P,\mathbf{I})} \cup \{\neg A\}$ is unsatisfiable.

W. Nutt ODBS-FDBs 2016/2017 (42/47)

Datalog and SLD Resolution

- Logic Programming uses SLD resolution
- SLD: Selection Rule Driven Linear Resolution for Definite Clauses
- For datalog programs P on \mathbf{I} , resp. $\mathcal{P}(P, \mathbf{I})$, things are simpler than for general logic programs (no function symbols, unification is easy)

Let $SLD(\mathcal{P})$ be the set of ground atoms provable with SLD Resolution from \mathcal{P} .

Theorem

For any datalog program P and database instance \mathbf{I} ,

$$\mathit{SLD}(\mathcal{P}(P,\mathbf{I})) = P(\mathbf{I}) = \mathbf{T}^{\infty}_{\mathcal{P}(P,\mathcal{I})} = \mathit{lfp}(\mathbf{T}_{\mathcal{P}(P,\mathcal{I})}) = \mathit{MM}(\mathcal{P}(P,\mathbf{I}))$$

W. Nutt ODBS-FDBs 2016/2017 (43/47)

SLD Resolution – Termination

- Notice: Selection rule for next rule/atom to be considered for resolution might affect termination
- Prolog's strategy (leftmost atom/first rule) is problematic

Example:

```
\begin{split} & child\_of(karl,franz). \\ & child\_of(franz,frieda). \\ & child\_of(frieda,pia). \\ & descendent\_of(X,Y) \leftarrow child\_of(X,Y). \\ & descendent\_of(X,Y) \leftarrow child\_of(X,Z), descendent\_of(Z,Y). \\ & \leftarrow descendent\_of(karl,X). \end{split}
```


SLD Resolution – Termination/2

```
\begin{split} & \text{Example (cntd.):} \\ & \quad \text{child\_of(karl,franz).} \\ & \quad \text{child\_of(franz,frieda).} \\ & \quad \text{child\_of(frieda,pia).} \\ & \quad \text{descendent\_of(X,Y)} \leftarrow \text{child\_of(X,Y).} \\ & \quad \text{descendent\_of(X,Y)} \leftarrow \text{descendent\_of(X,Z),child\_of(Z,Y).} \\ & \quad \leftarrow \text{descendent\_of(karl,X).} \end{split}
```


W. Nutt ODBS-FDBs 2016/2017 (45/47)

SLD Resolution – Termination /3

Example (cntd.):

```
\begin{split} & \texttt{child\_of}(\texttt{karl},\texttt{franz}). \\ & \texttt{child\_of}(\texttt{franz},\texttt{frieda}). \\ & \texttt{child\_of}(\texttt{frieda},\texttt{pia}). \\ & \texttt{descendent\_of}(\texttt{X},\texttt{Y}) \leftarrow \texttt{child\_of}(\texttt{X},\texttt{Y}). \\ & \texttt{descendent\_of}(\texttt{X},\texttt{Y}) \leftarrow \texttt{descendent\_of}(\texttt{X},\texttt{Z}), \\ & \leftarrow \texttt{descendent\_of}(\texttt{karl},\texttt{X}). \end{split}
```


W. Nutt ODBS-FDBs 2016/2017 (46/47)

Exercise: Metro Reachability

Over the Metro database, consider the predicates reachableFromOne/3 and reachableFromBoth/3, with the following meaning for stations $a,\ b,\$ and c:

- reachableFromOne(a, b, c) holds if c is reachable from one of a or b;
- $\ensuremath{ 2 \hspace*{-0.8pt} 0 \hspace*{-0.8pt} }$ reachable from both of a and b.

Write datalog rules that define these predicates.

