
Ontology and Database Systems:
Foundations of Database Systems

Part 1: Databases and Queries

Werner Nutt

Faculty of Computer Science
European Master in Computational Logic

A.Y. 2015/2016

Foundations of Database Systems

Part 1: Databases and Queries

Relational Databases: Principles

A database has two parts: schema and instance

The schema describes how data is organized:

relations with their names, arity, and names and types of attributes

integrity constraints like key and foreign key constraints,
functional dependencies, inclusion dependencies, domain constraints

The instance contains the actual data:

for every relation, there is a relation instance

the relation instance is a set (multiset?) of tuples
of the right arity and type

Often, we ignore types and integrity constraints
Sometimes, we ignore also the attribute names

W. Nutt ODBS-FDBs 2015/2016 (1/19)

Foundations of Database Systems

Part 1: Databases and Queries

Example Schema: Students and Courses

Relation schemas

Student(sid : INTEGER, sname : STRING, city : STRING, age : INTEGER)

Course(cid : INTEGER, cname : STRING, faculty : STRING)

Enrolled(sid : INTEGER, cid : INTEGER, aY : STRING, mark : STRING)

Integrity constraints

Primary keys

Student(sid)
Course(cid)
Enrolled(sid, cid, aY)

Foreign keys:

Enrolled(sid) references Student(sid)
Enrolled(cid) references Course(cid)

W. Nutt ODBS-FDBs 2015/2016 (2/19)

Foundations of Database Systems

Part 1: Databases and Queries

Schemas: Formalization

A relation schema consists of

a relation name

an ordered list of attributes, possibly with types

Abstract notation R(A1, . . . , An), or R(A1 : τ1, . . . , An : τn)

The arity of R, written ary(R), is the number of arguments of R

A database schema S consists of

a signature Σ, which is a set of relation schemas

a set Γ of integrity constraints over Σ,
which may be expressed as formulas in first-order logic (FOL)

Simplified notation: S = {R1, . . . , Rm}, or S = {R1/n1, . . . Rm/nm},
(i.e., we only mention the names, or the names with their arity)

Exercise: Express the primary and foreign key constraints

in the Students and Courses schema by FOL formulas

W. Nutt ODBS-FDBs 2015/2016 (3/19)

Foundations of Database Systems

Part 1: Databases and Queries

Domain: Formalization

We assume there is an infinite set of constants dom, called the domain

When we ignore types, we do not make any assumptions
about the constants in dom

Otherwise, dom =
⋃k
i=1 τi, where τ1, . . . , τk are the types

Definition

A type τ with an order “<” is an ordered type. The order “<” is

dense if for every a, b ∈ τ with a < b, there is a c ∈ τ such that a < c < b

discrete if for every a, b ∈ τ with a < b, there are at most finitely many c
such that a < c < b

Example

Consider integers, reals, strings, and booleans.
Which type has a dense and which a discrete ordering?

W. Nutt ODBS-FDBs 2015/2016 (4/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relation Instances

Relation R with arity n:

an instance of R is a finite set of n-tuples over dom

Relation R with schema R(A1 : τ1, . . . , An : τn):

as before, plus the components of the n-tuples in an instance
have to be of the right type

W. Nutt ODBS-FDBs 2015/2016 (5/19)

Foundations of Database Systems

Part 1: Databases and Queries

Schema Instances

An instance of the signature Σ is a function I that

maps every R ∈ Σ to an instance of R, denoted I(R)

Every instance I of Σ can be seen as a first-order interpretation/structure
(also denoted I):

domain of I is ∆I = dom

cI = c, for every c ∈ dom
(proper names, i.e., every constant is interpreted as itself)

RI = I(R)

A function I is an instance of the schema S = (Σ,Γ) if

I is an instance of Σ

I satisfies every integrity constraint γ ∈ Γ in the sense
of first-order logic (FOL)

W. Nutt ODBS-FDBs 2015/2016 (6/19)

Foundations of Database Systems

Part 1: Databases and Queries

Logic Programming Perspectice

Often an alternate definition of instances is helpful

Definition

A fact over a relation R with arity n is an expression R(a1, . . . , an),
where a1, . . . , an ∈ dom

A relation instance is a finite set of facts over R

A signature instance I of Σ is a finite set of facts over the relations in Σ

Example

Iuniv = { Student(123, Egger, Bozen, 25), Student(777, Hussein, Dresden, 23),
Course(104, Programming, CS), Course(106, Databases, CS),
Course(217, Optics, PHYS)
Enrolled(123, 104, 11/12, fail), Enrolled(123, 104, 12/13, fail),
Enrolled(123, 104, 13/14, pass), Enrolled(123, 106, 12/13, pass),
Enrolled(777, 217, 12/13, pass) }

W. Nutt ODBS-FDBs 2015/2016 (7/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Database Queries

A query over a schema S is

a function that maps every instance of S to a set of tuples such that

all tuples have the same length (= arity of the query)

tuple values at the same position have the same type

a piece of syntax that defines such a function

Query languages are/should be declarative:

you express what you want to know, not how to compute it
(a query engine analyzes the query and creates an execution plan)

W. Nutt ODBS-FDBs 2015/2016 (8/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Query Languages

Theoretical languages

Relational Algebra (that’s how Codd started it)

Relational Calculus (= FOL in essence)

Datalog (drops negation, adds recursion)

Commercial language: SQL

= Relational Calculus (at its core)

+ Relational Algebra

+ a bit of Datalog (implemented in IBM DB2, Microsoft SQL Server)

+ aggregates, arithmetic, nulls, . . . , functions, procedures

W. Nutt ODBS-FDBs 2015/2016 (9/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Calculus Queries

Definition

A query in (domain) relational calculus (RelCalc) has the form

Q = {(x1, . . . , xn) | φ}

where

φ is a predicate logic formula

x1, . . . , xn are the free variables of φ

We say that
φ is the body of the query,
x1, . . . , xn are the output variables, and
n is the arity of the query.

If the arity is not important, we write x̄ instead of x1, . . . , xn

We sometimes write Qφ to denote the query defined by φ
W. Nutt ODBS-FDBs 2015/2016 (10/19)

Foundations of Database Systems

Part 1: Databases and Queries

Reminder on Predicate Logic Formulas

A term is a constant or a variable

An atom is an expression R(t1, . . . , tn) where R is a relation symbol of arity n
and t1, . . . , tn are terms

A formula F is an atom or has the form

(F1 ∧ F2), (F1 ∨ F2), or (F1 → F2)

¬F
(∃xF), (∀xF)

where F , F1, F2 are formulas.

(Operators have the usual precedences.

We drop parentheses that are not needed for the structure of a formula.)

Exercise (once the semantics has been defined):
Show that the logical symbols ∧, ∃, ¬ suffice to express all other symbols

W. Nutt ODBS-FDBs 2015/2016 (11/19)

Foundations of Database Systems

Part 1: Databases and Queries

Equality and Built-in Predicates

Sometimes we use also the predicate symbols

“=”, “<”, “≤”, “ 6=”

Atoms with these symbols are called

equalities (“=”)

comparisons (“<”, “≤”)

disequalities (“ 6=”)

Clearly, they can only be applied to terms of the same type

Comparisons can only be used for terms of a type that is ordered

W. Nutt ODBS-FDBs 2015/2016 (12/19)

Foundations of Database Systems

Part 1: Databases and Queries

Bound and Free Variables

Definition

An occurrence of a variable x in formula φ is bound
if it is within the scope of a quantifier ∃x or ∀x

An occurrence of a variable in φ is free iff it is not bound

A variable of formula φ is free if it has a free occurrence

Free variables specify the output of a query

W. Nutt ODBS-FDBs 2015/2016 (13/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Calculus Queries: Semantics

In FOL, the semantics of a formula is defined in terms of interpretations and
assignments. Recall:

every instance I defines a first-order interpretation I

an assignment is a mapping α : var→ dom

There is a classical recursive definition of when
an interpretation I and an assignment α satisfy a formula φ, written

I, α |= φ,

which we take for granted

Definition

Let Q = {(x1, . . . , xn) | φ} be a query. We define the answer of Q over I as

Q(I) = {α(x̄) | I, α |= φ}

W. Nutt ODBS-FDBs 2015/2016 (14/19)

Foundations of Database Systems

Part 1: Databases and Queries

Exercise

Express the following queries over our university schema in Relational Calculus

Which are the names of students that have passed an exam in CS?

Which students (given by their id) have never failed an exam in CS?

Which students (given by their id) have passed the exams
for all courses in CS?

Evaluate the expressions over the instance Iuniv

W. Nutt ODBS-FDBs 2015/2016 (15/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Algebra

Expressions E are built up from

relation symbols R

using the operators

union (E1 ∪ E2), intersection (E1 ∩ E2), set difference (E1 \ E2),
called boolean operators

selection σC(E)

projection πX(E)

cartesian product E1 × E2

join E1 1C E2

attribute renaming (ρA←B(E))

where C is a condition involving equalities and comparisons between attributes
and constants, and X is a set of attributes of E

For an instance I, an expression E is evaluated as a set of tuples E(I)

A query is an expression
W. Nutt ODBS-FDBs 2015/2016 (16/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Algebra: Remarks

An operator not only returns a set of tuples as the result, but also a
schema for the result.

Operators that mention attributes can only be applied to expressions that
have that attribute in their schema.

Boolean operators can only be applied to expressions with the same
schema.

W. Nutt ODBS-FDBs 2015/2016 (17/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Algebra: Examples

What is the meaning of the following queries?

σcity=’Bozen’∧age>21(Student)

πcname,faculty(Course)

πcname(Course 1Course.cid=Enrolled.cid Enrolled)

πsid(Student) \ πsid(Enrolled)

W. Nutt ODBS-FDBs 2015/2016 (18/19)

Foundations of Database Systems

Part 1: Databases and Queries

Relational Algebra: Exercise

Express the following queries over our university schema in Relational Algebra

What are the names of the courses for which student Egger
has failed an exam?

Which students have failed an exam for the same course at least twice?

Which students have never failed an exam in Physics?

Evaluate the expressions over the instance Iuniv

W. Nutt ODBS-FDBs 2015/2016 (19/19)

	Part 1: Databases and Queries
	Foundations of Database Systems

