Ontology and Database Systems: Foundations of Database Systems Part 4: Incomplete Databases

Werner Nutt

Faculty of Computer Science Master of Science in Computer Science

A.Y. 2014/2015

Freie Universität Bozen

Libera Università di Bolzano

FREE UNIVERSITY OF BOZEN · BOLZANO

イロト イヨト イヨト イヨト

크

Incomplete Information

Schema

```
Person(fname, surname, city, street)
City(cname, population)
```

We know

- Mair lives in Bozen (but we don't know first name and street)
- Carlo Rossi lives in Bozen (but we don't know the street)
- Mair and Carlo Rossi live in the same street (but we don't know which)
- Maria Pichler lives in Brixen
- Bozen has a population of 100,500
- Brixen has a population < 100,000 (but we don't known the number)

Queries

- Seturn first name and surname of people living in Bozen!
- In the surnames of people living in Bozen!
- Who (surname) is living in the same street as Mair?
- Which people are living in a city with less than 100,000 inhabitants?

Incomplete Information: Questions

How can we represent this info?

- What does the representation look like?
- What is its meaning?
- What answers should the queries return?
- How can we define the semantics of queries?

Modeling Incomplete Information: SQL Nulls

Person

fname	surname	city	street
NULL	Mair	Bozen	NULL
Carlo	Rossi	Bozen	NULL
Maria	Pichler	Brixen	NULL

City

cname	population
Bozen	100,500
Brixen	NULL

Intuitive meaning of NULL: one of

- (i) does not exist
- (ii) exists, but is unknown
- (iii) unknown whether (i) or (ii)

SQL Nulls: Formal Semantics

- dom (or, equivalenty, every type) is extended by a new value: NULL
- built-in predicates are evaluated according to a 3-valued logic with truth values *false < unknown < true*
- atoms with NULL evaluate to unknown
- Boolean operations:
 - AND/OR correspond to min/max on truth values
 - NOT extends the classical definition by NOT(unknown) = unknown
- additional operation $ISNULL(\cdot)$ with ISNULL(v) = true iff v is NULL
- a query returns those tuples for which query conditions evaluate to true

SQL Nulls: Example Queries

- Query 1 returns (NULL, Mair) and (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Queries 3 and 4 return nothing

Representation Systems [Imieliński/Lipski, 1984]

Distinguish between

- semantic instances, which are the ones we know
- syntactic instances, which contain tuples with variables (written \perp_1, \perp_2, \ldots)

A syntactic instance represents many semantic instances

Syntactic instances are called multi-tables (i.e., several tables).

There are three kinds of (multi-)tables: Codd Tables: a variable occurs no more than once Naive or Variable Tables: a variable can occur several times Conditional Tables: variable table where each tuple \bar{t} is tagged with a boolean combination $cond(\bar{t})$ of built-in atoms

Short names: table, v-table, c-table

(6/73)

Semantics of Tables

Let **T** be a multi-table with variables $var(\mathbf{T})$. For an assignment $\alpha: var(\mathbf{T}) \rightarrow \mathbf{dom}$ we define

```
\alpha \mathbf{T} = \{ \alpha \, \bar{t} \mid \bar{t} \in \mathbf{T}, \ \alpha \models cond(\bar{t}) \}
```

Then **T** represents the infinite sets of instances

$$rep(\mathbf{T}) = \{ \alpha \mathbf{T} \mid \alpha : var(\mathbf{T}) \to \mathsf{dom} \}$$
$$Rep(\mathbf{T}) = \{ \mathbf{J} \mid \mathbf{I} \subseteq \mathbf{J} \text{ for some } \mathbf{I} \in rep(\mathbf{T}) \}$$

where

 $rep(\mathbf{T})$ is the *closed-world* interpretation of \mathbf{T} $Rep(\mathbf{T})$ is the *open-world* interpretation of \mathbf{T}

(Many results hold for both, the closed-world and the open-world interpretation. We assume open-world interpretation if not said otherwise.)

Certain and Possible Answers

Given **T** and a query Q, the tuple \bar{c} is

• a certain answer (for Q over T) if

 \bar{c} is returned by Q over all instances represented by ${\bf T}$

• a possible answer if

 \bar{c} is returned by Q over some instance represented by ${\bf T}$

We denote the set of all certain answers as $cert_{T}(Q)$.

We have

$$cert_{\mathbf{T}}(Q) = \bigcap_{\mathbf{J} \in Rep(\mathbf{T})} Q(\mathbf{J})$$

Modeling Incomplete Information: Codd-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	\perp_3
Maria	Pichler	Brixen	\perp_4

City

cname	population
Bozen	100,500
Brixen	\perp_5

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair
- Query 4 returns nothing

Modeling Incomplete Information: v-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	\perp_2
Maria	Pichler	Brixen	\perp_4

City

cname	population
Bozen	100,500
Brixen	\perp_5

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair and Rossi
- Query 4 returns nothing

Modeling Incomplete Information: c-Tables

Person

fname	surname	city	street
\perp_1	Mair	Bozen	\perp_2
Carlo	Rossi	Bozen	\perp_2
Maria	Pichler	Brixen	\perp_4

City

cname	population	cond
Bozen	100,500	true
Brixen	\perp_5	$\perp_5 < 100,000$

Certain answers for our example queries:

- Query 1 returns (Carlo, Rossi)
- Query 2 returns Mair and Rossi
- Query 3 returns Mair and Rossi
- Query 4 returns Pichler

Strong Representation Systems

Definition

Let Q be a query and \mathbf{T} be a table. Then

$$Q(\mathbf{T}) := \{Q(\mathbf{I}) \mid \mathbf{I} \in \mathit{rep}(\mathbf{T})\}$$

That is, $Q(\mathbf{T})$ contains the relation instances obtained by applying Q individually to each instance represented by \mathbf{T} .

Note: $Q(\mathbf{T})$ is a set of sets of tuples, not a set of tuples!

Strong Representation Systems (cont)

Theorem (Imieliński/Lipski)

For every relational algebra query Q and every c-table ${\bf T}$ one can compute a c-table $\widetilde{{\bf T}}$ such that

$$\mathit{rep}(\widetilde{\mathbf{T}}) = Q(\mathbf{T})$$

That is,

- T can be considered the answer of Q over T
- the result of querying a c-table can be represented by a c-table
 → c-tables are a strong representation system

The downside:

• handling of c-tables is intractable:

the membership problem " $I \in rep(T)$ "? is NP-hard

• the c-tables $\widetilde{\mathbf{T}}$ may be very large

Weak Representation Systems: Motivation

Let $\boldsymbol{\mathsf{T}}_{\mathrm{v}}$ be our example v-table and consider

$$\begin{split} Q_0 &= \pi_{\texttt{fname},\texttt{sname}}(\sigma_{\texttt{city}=\texttt{'Bozen'}}(\texttt{Person})),\\ Q_1 &= \pi_{\texttt{sname}}(\sigma_{\texttt{city}=\texttt{'Bozen'}}(\texttt{Person})) \end{split}$$

Then: $\operatorname{cert}_{\mathsf{T}_{\mathrm{v}}}(Q_0) = \{(\operatorname{Carlo}, \operatorname{Rossi})\}$ and $\operatorname{cert}_{\mathsf{T}_{\mathrm{v}}}(Q_1) = \{(\operatorname{Mair}), (\operatorname{Rossi})\}$

Observation: $Q_0 = \pi_{\texttt{sname}}(Q_1)$, but $\mathit{cert}_{\mathsf{T}_{\mathrm{v}}}(Q_0)$ cannot be computed from $\mathit{cert}_{\mathsf{T}_{\mathrm{v}}}(Q_1)$

Compositionality is violated! Better keep the nulls!

Idea: Try to keep enough information for representing certain answers!

Incomplete Databases: Definition

Definition (Incomplete Database)

An **incomplete database** is a set of instances $(\mathcal{I}, \mathcal{J})$.

For a query Q and an incomplete db $\mathcal I,$ the set of certain answers for Q over $\mathcal I$ is

$$\operatorname{cert}_{\mathcal{I}}(Q) := \bigcap_{\mathbf{I} \in \mathcal{I}} Q(\mathbf{I}).$$

Weak Representation Systems

Let \mathcal{L} be a query language (e.g., conjunctive queries, positive queries, positive relational algebra)

Definition (\mathcal{L} -Equivalence)

Two incomplete databases \mathcal{I} , \mathcal{J} are \mathcal{L} -equivalent, denoted $\mathcal{I} \equiv_{\mathcal{L}} \mathcal{J}$, if for each $Q \in \mathcal{L}$ we have

 $\mathit{cert}_{\mathcal{I}}(Q) = \mathit{cert}_{\mathcal{J}}(Q)$

That is, $\mathcal L\text{-equivalent}$ incomplete dbs give rise to the same certain answers for all queries in $\mathcal L.$

Goal: For Q and **T**, find a **T**' such that **T**' is \mathcal{L} -equivalent to $Q(\operatorname{Rep}(\mathbf{T}))$, for a suitable \mathcal{L}

Weak Representation Systems (cntd)

 $\mathcal{L}_{\mathsf{calc}}^+$ language of positive relational calculus queries

Theorem (Imielinski/Lipski)

For every positive query Q and v-table ${\bf T},$ one can compute a v-table ${\bf T}'$ such that

$$\operatorname{Rep}(\mathbf{T}') \equiv_{\mathcal{L}^+_{\operatorname{calc}}} Q(\operatorname{Rep}(\mathbf{T}))$$

Proof.

Apply Q to **T**, treating variables like constants.

That is, \mathbf{T}'

- contains enough information to compute certain answers to positive queries on $Q(Rep(\mathbf{T}))$
- can be considered the answer of Q over **T**, in the context of positive queries

