Ontology and Database Systems: Foundations of Database Systems

Part 1: Databases and Queries

Werner Nutt

Faculty of Computer Science European Master in Computational Logic

A.Y. 2014/2015

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Relational Databases: Principles

A database has two parts: schema and instance

The schema describes how data is organized:

- relations with their names, arity, and names and types of attributes
- integrity constraints like key and foreign key constraints, functional dependencies, inclusion dependencies, domain constraints

The instance contains the actual data:

- for every relation, there is a relation instance
- the relation instance is a set (multiset?) of tuples of the right arity and type

Often, we ignore types and integrity constraints Sometimes, we ignore also the attribute names

Example Schema: Students and Courses

Relation schemas

```
Student(sid: INTEGER, sname: STRING, city: STRING, age: INTEGER)
Course(cid: INTEGER, cname: STRING, faculty: STRING)
Enrolled(sid: INTEGER, cid: INTEGER, aY: STRING, mark: STRING)
```

Integrity constraints

Primary keys

```
Student(sid)
Course(cid)
Enrolled(sid, cid, aY)
```

Foreign keys:

```
Enrolled(sid) references Student(sid)
Enrolled(cid) references Course(cid)
```


Schemas: Formalization

A relation schema consists of

- a relation name
- an ordered list of attributes, possibly with types

Abstract notation $R(A_1, \ldots, A_n)$, or $R(A_1 : \tau_1, \ldots, A_n : \tau_n)$

The arity of R, written ary(R), is the number of arguments of R

A database schema S consists of

- a signature Σ , which is a set of relation schemas
- a set Γ of integrity constraints over Σ , which may be expressed as formulas in first-order logic (FOL)

Simplified notation: $S = \{R_1, \dots, R_m\}$, or $S = \{R_1/n_1, \dots R_m/n_m\}$, (i.e., we only mention the names, or the names with their arity)

Exercise: Express the primary and foreign key constraints in the Students and Courses schema by FOL formulas

(3/19)

Domain: Formalization

We assume there is an infinite set of constants dom, called the domain

When we ignore types, we do not make any assumptions about the constants in **dom**

Otherwise, $\mathbf{dom} = \bigcup_{i=1}^k au_i$, where au_1, \dots, au_k are the types

Definition

A type τ with an order "<" is an *ordered type*. The order "<" is

- dense if for every $a, b \in \tau$ with a < b, there is a $c \in \tau$ such that a < c < b
- discrete if for every $a, b \in \tau$ with a < b, there are at most finitely many c such that a < c < b

Example

Consider integers, reals, strings, and booleans. Which type has a dense and which a discrete ordering?

Relation Instances

Relation R with arity n:

ullet an instance of R is a finite set of n-tuples over ${f dom}$

Relation R with schema $R(A_1: \tau_1, \ldots, A_n: \tau_n)$:

ullet as before, plus the components of the n-tuples in an instance have to be of the right type

Schema Instances

An instance of the signature Σ is a function ${\bf I}$ that

• maps every $R \in \Sigma$ to an instance of R, denoted $\mathbf{I}(R)$

Every instance I of Σ can be seen as a **first-order interpretation/structure** (also denoted I):

- domain of I is $\Delta^{I} = \mathbf{dom}$
- $c^{\mathbf{I}}=c$, for every $c\in \mathbf{dom}$ (proper names, i.e., every constant is interpreted as itself)
- $\bullet R^{\mathbf{I}} = \mathbf{I}(R)$

A function I is an instance of the schema $S = (\Sigma, \Gamma)$ if

- I is an instance of Σ
- I satisfies every integrity constraint $\gamma \in \Gamma$ in the sense of first-order logic (FOL)

(6/19)

Logic Programming Perspectice

Often an alternate definition of instances is helpful

Definition

- A fact over a relation R with arity n is an expression $R(a_1, \ldots, a_n)$, where $a_1, \ldots, a_n \in \mathbf{dom}$
- ullet A relation instance is a finite set of facts over R
- ullet A signature instance ${f I}$ of Σ is a finite set of facts over the relations in Σ

Example

```
\begin{split} \mathbf{I}_{\rm univ} = \{ & \; \text{Student}(123, \; \text{Egger}, \; \text{Bozen}, \; 25), \; \text{Student}(777, \; \text{Hussein}, \; \text{Dresden}, \; 23), \\ & \; \text{Course}(104, \; \text{Programming}, \; \text{CS}), \; \text{Course}(106, \; \text{Databases}, \; \text{CS}), \\ & \; \text{Course}(217, \; \text{Optics}, \; \text{PHYS}) \\ & \; \text{Enrolled}(123, \; 104, \; 11/12, \; \text{fail}), \; \text{Enrolled}(123, \; 104, \; 12/13, \; \text{fail}), \\ & \; \text{Enrolled}(123, \; 104, \; 13/14, \; \text{pass}), \; \text{Enrolled}(123, \; 106, \; 12/13, \; \text{pass}), \\ & \; \text{Enrolled}(777, \; 217, \; 12/13, \; \text{pass}) \, \} \end{split}
```

Relational Queries

A **query** over a schema ${\mathcal S}$ is

- ullet a function that maps every instance of ${\mathcal S}$ to a set of tuples such that
 - all tuples have the same length (= arity of the query)
 - tuple values at the same position have the same type
- a piece of syntax that defines such a function

Query languages are/should be declarative:

 you express what you want to know, not how to compute it (a query engine analyzes the query and creates an execution plan)

Relational Query Languages

- Theoretical languages
 - Relational Algebra (that's how Codd started it)
 - Relational Calculus (= FOL in essence)
 - Datalog (drops negation, adds recursion)
- Commercial language: SQL
 - Relational Calculus (at its core)
 - + Relational Algebra
 - + a bit of Datalog (implemented in IBM DB2, Microsoft SQL Server)
 - + aggregates, arithmetic, nulls, ..., functions, procedures

Relational Algebra

Expressions E are built up from

ullet relation symbols R

using the operators

- union $(E_1 \cup E_2)$, intersection $(E_1 \cap E_2)$, set difference $(E_1 \setminus E_2)$, called boolean operators
- selection $\sigma_C(E)$
- projection $\pi_X(E)$
- cartesian product $E_1 \times E_2$
- join $E_1 \bowtie_C E_2$
- attribute renaming $(\rho_{A \leftarrow B}(E))$

where C is a condition involving equalities and comparisons between attributes and constants, and X is a set of attributes of E

For an instance I, an expression E is evaluated as a set of tuples E(I)

A query is an expression

Relational Algebra: Remarks

- An operator not only returns a set of tuples as the result, but also a schema for the result.
- Operators that mention attributes can only be applied to expressions that have that attribute in their schema.
- Boolean operators can only be applied to expressions with the same schema.

Relational Algebra: Examples

What is the meaning of the following queries?

- $\sigma_{\text{city}='Bozen' \land age} > 21}(\texttt{Student})$
- $\pi_{\mathsf{cname},\mathsf{faculty}}(\mathsf{Course})$
- $\bullet \ \pi_{\texttt{cname}}(\texttt{Course} \bowtie_{\texttt{Course.cid} = \texttt{Enrolled.cid}} \texttt{Enrolled})$
- $\pi_{\sf sid}({\sf Student}) \setminus \pi_{\sf sid}({\sf Enrolled})$

Relational Algebra: Exercise

Express the following queries over our university schema in Relational Algebra

- What are the names of the courses for which student Egger has failed an exam?
- Which students have failed an exam for the same course at least twice?
- Which students have never failed an exam in Physics?

Evaluate the expressions over the instance $I_{\rm univ}$

Relational Calculus Queries

Definition

A query in (domain) relational calculus (RelCalc) has the form

$$Q = \{(x_1, \dots, x_n) \mid \phi\}$$

where

- ullet ϕ is a predicate logic formula
- x_1, \ldots, x_n are the free variables of ϕ

We say that

- \bullet ϕ is the **body** of the query,
- x_1, \ldots, x_n are the **output variables**, and
- n is the arity of the query.

If the arity is not important, we write \bar{x} instead of x_1,\ldots,x_n

We sometimes write Q_{ϕ} to denote the query defined by ϕ

W. Nutt ODBS-FDBs 2014/2015 (14/19)

Reminder on Predicate Logic Formulas

A term is a constant or a variable

An atom is an expression $R(t_1,\ldots,t_n)$ where R is a relation symbol of arity n and t_1,\ldots,t_n are terms

A formula F is an atom or has the form

- \bullet $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$, or $(F_1 \to F_2)$
- ¬F
- \bullet $(\exists x F), (\forall x F)$

where F, F_1 , F_2 are formulas.

(Operators have the usual precedences.

We drop parentheses that are not needed for the structure of a formula.)

Exercise (once the semantics has been defined): Show that the logical symbols \land , \exists , \neg suffice to express all other symbols

Equality and Built-in Predicates

Sometimes we use also the predicate symbols

"=", "<", "
$$\leq$$
", " \neq "

Atoms with these symbols are called

- equalities ("=")
- comparisons ("<", "≤")
- disequalities ("≠")

Clearly, they can only be applied to terms of the same type

Comparisons can only be used for terms of a type that is ordered

Bound and Free Variables

Definition

- An occurrence of a variable x in formula ϕ is bound if it is within the scope of a quantifier $\exists x$ or $\forall x$
- An occurrence of a variable in ϕ is free iff it is not bound
- ullet A variable of formula ϕ is *free* if it has a free occurrence

Free variables specify the output of a query

Relational Calculus Queries: Semantics

In FOL, the semantics of a formula is defined in terms of *interpretations* and *assignments*. Recall:

- ullet every instance ${f I}$ defines a first-order interpretation ${f I}$
- an assignment is a mapping $\alpha : \mathbf{var} \to \mathbf{dom}$

There is a classical recursive definition of when an interpretation ${\bf I}$ and an assignment α satisfy a formula ϕ , written

$$\mathbf{I}, \alpha \models \phi,$$

which we take for granted

Definition

Let $Q = \{(x_1, \dots, x_n) \mid \phi\}$ be a query. We define the **answer** of Q over \mathbf{I} as

$$Q(\mathbf{I}) = \{ \alpha(\bar{x}) \mid \mathbf{I}, \alpha \models \phi \}$$

Exercise

Express the following queries over our university schema in Relational Calculus

- Which are the names of students that have passed an exam in CS?
- Which students (given by their id) have never failed an exam in CS?
- Which students (given by their id) have passed the exams for all courses in CS?

Evaluate the expressions over the instance $I_{\rm univ}$

