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ABSTRACT

In many applications including loosely coupled cloud databases,
collaborative editing and network monitoring, data from multiple
sources is regularly used for query answering. For reasons such
as system failures, insufficient author knowledge or network is-
sues, data may be temporarily unavailable or generally nonexistent.
Hence, not all data needed for query answering may be available.

In this paper, we propose a natural class of completeness pat-
terns, expressed by selections on database tables, to specify com-
plete parts of database tables. We then show how to adapt the oper-
ators of relational algebra so that they manipulate these complete-
ness patterns to compute completeness patterns pertaining to query
answers. Our proposed algebra is computationally sound and com-
plete with respect to the information that the patterns provide. We
show that stronger completeness patterns can be obtained by con-
sidering not only the schema but also the database instance and we
extend the algebra to take into account this additional information.
We develop novel techniques to efficiently implement the compu-
tation of completeness patterns on query answers and demonstrate
their scalability on real data.

1. INTRODUCTION

In many applications, data from multiple sources (tables, sites,
authors, measurement systems, etc.) is used in query answering.
Examples are loosely coupled cloud databases such as AzureDB
[[16} |15]], crowd-sourced collaborative projects such as Wikipedia,
and warehouses collecting monitoring data such as Darkstar [14].

In all these scenarios, data may be incomplete for a variety of
reasons. In the first case of cloud databases, incompleteness occurs
mainly due to network delays or the failure of data nodes, which
may render data to be temporarily unavailable. In the second case,
the open nature of collaborative databases makes it possible for
anyone to enter nearly any information, and incompleteness arises
due to insufficient or biased author knowledge. In the third case
of network data warehouses, partial integration of heterogeneous
source feeds or operational failures of reporting systems may lead
to the data warehouse having only partially complete information.
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To address incompleteness in these scenarios, many different
mechanisms have been investigated. For cloud databases, Lang et
al. [[16L|15]] identified the sources of incompleteness and traced how
it is propagated through a query plan. For Wikipedia, a template
has been introduced that allows lists to be labeled as complete. For
data streams feeding network databases, it was proposed to deliver
data only after so-called punctuations have arrived, that is, check-
points that enable one to conclude that all data up to a certain time-
point has been received [[19} [12]. Further, the differences between
these scenarios has resulted in different languages used to specify
completeness. While the first approach uses units of computation
(shards, columns, tables), the second uses natural-language state-
ments, and the third uses temporal selections on data streams.

Despite these differences, a commonality across these scenarios
is that completeness specifications of parts of databases are given.
Also, in all three scenarios, knowledge about which parts of the
query results are complete can help users understand whether their
information needs can be satisfied with the available data. In this
paper, we focus on this problem of using completeness information
for parts of a database to annotate query answers with informa-
tion about which parts of the query answers are complete. If the
presented results do not meet user expectations, they can then try
to consult specific additional data sources, use historical data/sta-
tistical approaches to estimate missing data, or reformulate their
queries. This is preferable to users incorrectly assuming that their
query results are complete, or alternatively that no part of their
query results is complete.

The setting discussed here differs from the one commonly called
incomplete databases (for a recent survey, see e.g. [[18|]). There,
one focuses on the meaning and consequences of null values, that
is, individual cell values in known records that are missing or in-
complete. In contrast, we investigate the impact on query results of
entire database records that may be missing.

Network Data Warehouse Use Case. We consider a sim-
plified database D,qint Of a network provider, for illustrative pur-
poses. The database schema contains the following three tables:

e Warnings(day, week, ID, message),
e Maintenance(ID, responsible, reason),
e Teams(name, specialization).

The first table stores the warnings received from network ele-
ments, identified by an ID, together with a time stamp. The sec-
ond stores the set of network elements that are currently in main-
tenance, together with the responsible teams and the reasons for
maintenance. The third stores the maintenance teams together with
their specialization. We sometimes refer to these tables using only
the first letter of their name, i.e., W, M, and T



Warnings
day | week | ID | message Maintenance
r, | Mon 1 tw37 | high voltage ID | responsible | reason Teams
ro | Fri 1 tw37 | high voltage re | tw37 A disk failure name | specialization
rs | Wed 2 tw37 overheated 9 tw59 D software crash r13 A hardware
ry | Tue 1 tw59 | auto restart rio | tw83 B unknown T14 B hardware
rs | Fri 1 tw59 overheat ri1 | twl40 C update failure ris C network
6 | Mon 2 tw83 | high voltage ri2 | twl40 C network error T16 C software
r7 | Tue 2 tw83 | auto restart P4 * A * 17 D network
pl £ 1 % ES p5 ES B * p7 | % | * |
P2 | Mon 2 * * Ps * C *
P3| Wed 2 * *
Table 1: Database D,,.i»: annotated with completeness information.
A sample database using this schema is depicted in Table[T} Each Oweek=2(Warnings)
table contains in addition to the actual records (rows labeled with 7) day | week | ID | message
also a set of completeness patterns (rows labeled with p). Wed 2 tw37 | overheated
Suppose that warnings are loaded daily from an operational sys- Mon 2 tw83 | high voltage
tem. Suppose the current date is Thursday, week 2. The reports Tue 2 tw83 | auto restart
from last week (week 1) have all been loaded, and from this week, Mon = o o
so far the reports for Monday and Wednesday have been loaded, Wed = = =

while not all the ones for Tuesday have arrived yet. Then the com-
pleteness of the data for week 1, and for Monday and Wednesday
of week 2, are expressed by the completeness patterns (x, 1, x, %),
(Mon, 2, *, *), (Wed, 2, *, %), which appear as patterns p; to p3 in
Table[] Intuitively, these patterns assert that all possible records
that describe real-world facts and that match these patterns (with
7% being a wildcard), are present in the database.

Suppose also that we have information about all network ele-
ments currently in maintenance with teams A, B and C, because
their local systems automatically export data to the central database,
while others do not. This information is represented by the com-
pleteness patterns p4 to pg in Tablem

We also know all maintenance teams in the company, with their
specializations. This is pattern p7.

Suppose now we are interested in getting all warnings in week 2
for all elements that are in maintenance with a hardware team being
responsible. This information can be obtained via the following
SQL query Qpy:

SELECT =
FROM Warnings W

JOIN Maintenance M ON W.ID=M.ID

JOIN Teams T ON M.responsible=T.name
WHERE W.week=2

AND T.specialization=’hardware’

This query can be expressed by different algebraic expressions,
for instance the following:

Oweek=2(W) DXIw.1D=M.1D
(M [><]M4resp:T4name Uspec:“hw”(T))-

)

When evaluating this expression over the database D,,qint We
get the result shown in the first three rows in Table [3] But can
we also use the completeness information that we have about the
database to learn about the completeness of the query result?

Let us look at the example of the first selection operation in the
expression shown above, that is, oweek=2("W). The pattern pq
(¢, 1, %, %) does not tell anything about the result of this selection
because it talks about completeness of week 1 only.

Table 2: Intermediate data and metadata after the selection
operation oyeck—2(Warnings).

The pattern p2, however, which is (Mon, 2, *, %), does tell us
something about the result. Since we are selecting data only from
week 2, and p» says that all data from Monday week 2 is there,
we can infer that the result will be complete for all data on Mon-
day. Thus, we can infer that the pattern (Mon, *, *, %) holds over
the result. The same holds for the pattern p3. We summarize this
information in Table

We can proceed similarly for the selection ospec=«hw (1), which
preserves the pattern (x, ). Subsequently joining the completeness
patterns analogously to the base data, with the wildcard matching
any constants, we arrive at the conclusion that the query result is
complete for teams A, B and C on Monday and Wednesday. This
can be represented using completeness patterns as shown in Ta-
ble El Note that these conclusions have been drawn by applying
algebraic operations only to the patterns p; to pr.

Taking into account the interplay of query and state of the data-
base, more can be concluded: Inspecting the database, one observes
that teams A and B are the only known hardware teams, and that
due to the completeness of the Teams table, no other hardware
teams can exist. Since the query asks only for hardware teams, it is
therefore possible to summarize the six completeness patterns for
the teams A, B and C into just two patterns where A, B and C have
been replaced by a “«”. The result can be seen in Table[5} We will
later refer to this summarization as pattern promotion.

An end user would therefore know that on Monday and Wednes-
day, the retrieved warnings for tw37 and tw83 are really the only
ones that occurred. In contrast, for Tuesday, the user can see that
a warning for tw83 occurred, but there is no assurance that this is
the only warning that occurred on that day. To assure this, the user
would need to either load the data from Tuesday manually, or con-
sult the network admins to verify that no other warnings occurred
on that day.

Previous approaches (see Section [2) would only be able to say
that the query Qu, is not complete over the database D pqint-



| W.day | W.week | WID | W.message | M.ID | M.responsible | M.reason | T.name | T.specialization |

Wed 2 tw37 overheated tw37 A disk failure A hardware
Mon 2 tw83 | high voltage | tw83 B unknown B hardware
Tue 2 tw83 auto restart tw83 B unknown B hardware
MOI’I k k k k A % A %
MOH * * * * B %k B %k
MOH 3 k-l k- C %k C k
Wed sk 3k k A % A %

Table 3: Result of the query Qp, over the database D,,.i,; annotated with completeness information.

City
name | country | state | county

* USA Virginia *

* Germany * *

* Ukraine * *

* Bulgaria * *

* USA New York *

* UK Carmarthenshire *

* USA West Virginia Hampshire County
* Czech Moravian-Silesia Novy Jicin

Table 4: Completeness statements for cities on Wikipedia

Wikipedia Use Case. Wikipedia is an extreme example of a
crowd-sourced database, as a vast number of authors are contribut-
ing to articles. As a consequence, completeness of the data is a big
issueﬂ To specify completeness of data in various contexts such
as enumerated lists, authors use either natural language statements,
e.g. “This is a complete list of cities in the Commonwealth of Vir-
ginia in the United States”Er:)r a template to mark lists as com-
pleteﬂ Currently, ~500 pages use the template and ~5000 pages
use natural language expressions to state completeness.

Suppose we want to count the number of cities in certain coun-
tries. In the spirit of DBpedia [3[], we can scrape the data from
Wikipedia to obtain lists of cities in various countries. But what
quality guarantees do we find for this data? Table[]shows the com-
pleteness statements that we found for cities on Wikipedia. If we
were e.g. to count the number of cities in Bulgaria based on the
Wikipedia data, then we can use the guarantee given by some au-
thor that Wikipedia really contains all those cities. In contrast, for
France there is no completeness statement (and indeed the relevant
article does not include cities with small populations). Knowledge
of which countries are associated with completeness statements,
and which ones are not, can lead users to query specific additional
sources, such as the Mondial database or the CIA world factbook,
as needed.

Contributions. 1In the rest of this paper, we discuss how the in-
tuitive conclusions above can be formalized and automated. Our
contributions are the following:

!Correctness is an issue as well, but we ignore this for the moment.
2 http://en.wikipedia.org/wiki/List_of_|
cities_in_Virginia

) http://en.wikipedia.org/wiki/Template:
Complete_list

e We introduce a natural class of completeness patterns that
correspond to selections on database tables and can be ex-
pressed in the same schema as the normal data.

e We define a pattern algebra that, given completeness pat-
terns as input, provides metadata as output to identify the
extent of completeness of the query answer over a partially
complete database. This metadata is computed similarly to
the way the query answer itself is computed and can be exe-
cuted almost as efficiently.

e We extend this algebra to additionally take into account the
database instance, thus allowing one to compute more gen-
eral completeness patterns (i.e., stronger assertions), but po-
tentially requiring computation time exponential in the size
of the data.

e We develop techniques to efficiently implement the algebras
presented and show their scalability on real data. Our ex-
periments show that considering the database instance does
indeed lead to stronger completeness assertions while avoid-
ing exponential blow-up in practice.

Outline. This paper is structured as follows. In Section [2 we
discuss related work, in Section 3] we formalize partially complete
databases and completeness patterns, in Section@we present an al-
gebra for completeness patterns, in Section[3]we extend this algebra
to consider the state of the database instance, and discuss practical
aspects of our framework in Section|[f]

2. RELATED WORK

The classical paradigm for databases is the closed-world assump-
tion [23]], which asserts that the information in the database is com-
plete. For data integration and on the Semantic Web, often the
open-world assumption is preferred [[1], where nothing is assumed
about the completeness of the database. Open and closed-world se-
mantics were first discussed by Reiter in [23]], where he formalized
that negation as failure [[6] corresponds to standard negation under
the closed world assumption.

Scenarios as the one discussed in our motivating examples, how-
ever, require a middle ground. In such situations, parts of the
database known to be complete are considered closed-world, while
the incomplete parts are open-world. This intermediate paradigm,
called the partial (or, local 7)) closed-world assumption, has not
received as much attention so far.

The first formalization of this setting was by Motro [21], who
showed how to derive the completeness of a query answer given
statements about the completeness of other query answers. Sub-
sequently, Levy extended this idea by introducing table complete-
ness (TC) statements [17]], which are similar to tuple-generating
dependencies, and showed how to derive query answer complete-
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| W.day | W.week | WID | W.message | M.ID | M.responsible | M.reason | T.name | T.specialization |

Wed 2 tw37 overheated tw37 A disk failure A hardware
Mon 2 tw83 | high voltage | tw83 B unknown B hardware
Tue 2 tw83 auto restart tw83 B unknown B hardware
MOII k k k k * % * %
Wed * * * * * %k %k k

Table 5: Result of the query Qg over the database D,,,.i,: with summarized completeness information

ness from them. The completeness patterns used in this paper are
exactly the intersection of the statements introduced by Motro and
Levy. While Levy’s statements allow one to express the complete-
ness of a table in terms of other, incomplete tables, Motro’s state-
ments assume that all tables used in a statement are complete. The
intersection of these two is therefore the set of all statements that
do not use additional tables.

Other work, such as Denecker et al. [9]], Cortes-Calabuig et al.
[[7] and Razniewski and Nutt [22f, looked into reasoning about
query completeness using the database instance. However, they
used more expressive languages for their completeness descriptions
and/or queries and, thus, suffer from high complexity (coNP-data
complexity or ITZ -query complexity). More importantly, the pre-
vious work only studied the decision problem of whether the query
results are fully complete.

Fan and Geerts 10, |11]] investigated a related problem of com-
pleteness assessment in the presence of a database instance. How-
ever, they make the assumption that a master (“upper-bound”) data-
base instance is given to be able to determine which tuples are miss-
ing, which may not always be available.

Closer in spirit to our approach is the work by Lang et al. [16],
who address the problem of characterizing partial results computed
by query plans when some data may be unavailable. Their key
contributions are: (1) a taxonomy for classifying query result se-
mantics based on two properties of the partial result: cardinality
and correctness; according to cardinality, the result may be miss-
ing some tuples or may have extra tuples; according to correctness,
the result may be credible or non-credible; (2) an identification of
four models, with different granularities of analysis: query, oper-
ator, column and partition; and (3) a discussion of how the partial
result semantics can be propagated through various operators in a
query plan. A recent paper by Lang et al. [15] additionally allows
users to control the cost of a query returning partial results by defin-
ing the sorts of partial results that are acceptable. In terms of the
classification by Lang et al., we explore the cardinality dimension
(completeness/incompleteness), for the (finest) partition granular-
ity, in much greater technical depth. Our key contributions, which
distinguish us from [16], are: (1) a natural class of completeness
patterns that correspond to selections on database tables; (2) pat-
tern algebras that allow us to formally reason over completeness
patterns and the database instance as input, to compute complete-
ness patterns on the query output—in particular, our techniques can
use the database instance to infer stronger completeness patterns on
query results compared to the techniques described in [[16]]; and (3)
techniques to efficiently implement the algebras presented, and an
empirical evaluation of their scalability in practice. Thus, the tech-
nical contributions of the two papers are complementary.

Punctuations, checkpoints that allow one to conclude that all data
up to a certain timepoint has been received, are used in data streams
as a way to assert completeness in a time interval [[19, 12]. While
they are most often used to assert temporal completeness, they have
a similar flavor to our completeness patterns. However, existing

work has not studied how to use punctuations to determine which
portions of query answers are complete.

Data cleaning, the process of detecting and correcting errors, in-
consistencies, duplicates and other problems related to data cor-
rectness, has received considerable attention in the past [13, 4}
20]. Regarding incompleteness, extensive work has been done on
statistical approaches to missing value imputation (24} 2]]. The dif-
ference to our problem is that in missing value imputation, one is
already aware of the location of the incompleteness.

Finally, we note that our setting is different from what in the liter-
ature is commonly called incomplete databases (for a recent survey,
see e.g. [[18])). While this setting allows also for missing records, in
most of this work, implications on query answers of null values
in existing records is studied, such as providing certain answers,
where query answers over all possible completions of an incom-
plete database are provided, and possible answers, where answers
over at least one such completion are provided [1]]. In contrast, we
investigate the problem of how missing records in the database lead
to missing records in the query answer, and if so, from which parts
of the query answer.

3. DATABASE AND QUERY
COMPLETENESS PATTERNS

In this section we review database terminology and notation and
introduce the framework for completeness assessment.

We first introduce databases and the query language we are using
in this paper, then formalize completeness patterns, the semantics
of completeness patterns, and the notion of entailed completeness
patterns for query answers.

3.1 Databases and Queries

A relation schema is a sequence of attributes. A database schema
is a set of table names, each with a relation schema. If table R has
attributes A1, ..., A,, we say that n is the arity of R. We of-
ten write a tuple ¢ for R as t = (di1,...,dn), where di,...,d,
are constants. We interchangeably refer to d;, the value of ¢ for at-
tribute A;, as t[A;] or simply ¢[¢]. Given a fixed schema, a database
instance D stores for each table name a finite bag (= multiset) of
tuples for that table. The bag of tuples in D for table R is denoted
as R(D). If schema and instance are clear from the context, we
simply speak of a database.

An example of a database is Dinain¢ as shown in Table[T] while
ignoring the rows with p;.

As queries we consider those that can be expressed using the
relational algebra operations select, project and (equi)join (SPJ),
which correspond to single-block queries in SQL. To ease the ex-
position, we do not consider renaming in our presentation.

As in SQL, we assume bag semantics for both databases and
queries, that is, both can contain the same row multiple times.
When discussing generic properties of a query, we use the letter Q).
We use the letter F if the specific structure of the expression is im-



portant. With Q(D) and E(D) we denote their evaluation over a
database D.

3.2 Completeness Patterns

We now want to formalize the meaning of completeness patterns
such as rows p1 to p7 in Table[I] and the bottom six rows in Ta-
ble[3] A completeness pattern is a tuple composed of constants
or the wildcard symbol “*”. As patterns like those in Table [I] are
expressed over database tables, we call them base completeness
patterns. As the patterns in Table 3] refer to a query result, we call
them query completeness patterns.

DEFINITION 1 (BASE COMPLETENESS PATTERN). A base
completeness pattern for a table R is a pair (p, R) where p is a
completeness pattern with the same arity as R.

The relation R is dropped if it is clear from the context.

Example 1. Assume we want to say that the Maintenance ta-
ble is complete for all elements maintained by team A. Then this
can be expressed by the base completeness pattern (x, A, x), for
Maintenance, which is the pattern p4 in Tablem

A set of completeness patterns for a table can be stored in a corre-
sponding metadata table, which has the same attributes as the data
table. In the following, we assume that in a database each table has
an associated metadata table.

Intuitively, a base completeness pattern says that all rows of a
certain kind, namely those subsumed by the pattern, are present in
the table and no rows of this form are missing. In this way, they cre-
ate a middle ground between closed and open-world assumption.

A pattern p1 subsumes a pattern p» if for every position ¢ it holds
that p1[i] = p2[i] or pi[i] = *. In other words, p1 and py are
the same except that p; can contain additional *-values. A pattern
can also subsume a data tuple, since tuples are a special case of
patterns.

Consider a database D. A second database D¢, with the same
schema, contains D, written D C D°, if R(D) C R(D¢) for all
relations R in the schema. Intuitively, a database D containing D
corresponds to a possible state of the real world, about which D
has only limited information.

We say that D¢ satisfies the completeness pattern (p, R) wrt. D
if D C D¢ and all tuples in R(D°®) that are subsumed by p are
also in R(D). While in general, we do not know what is all the
data that holds in reality, completeness patterns restrict the possible
complete databases to the satisfying ones. Although completeness
patterns in general still allow infinitely many possible states of the
real world, all these possible states contain the same information in
the parts asserted to be complete.

DEFINITION 2 (CANDIDATE SET). Let D be a database and
P be a set of base completeness patterns that are annotated with
their respective relations. A database D with the same schema is
called a candidate completion for D and P if (1) D C D° and (2)
De satisfies all patterns in P wrt. D.

The set of all candidate completions is called the candidate set,
written Cand” (D).

Example 2. Consider again the database Dinain¢ from Table [I]
Because of pattern ps, which expresses that all warnings from Wed-
nesday of week 2 are already in D,qint, a database D that con-
tains the fact Warnings(Wed, 2, tw37, highvoltage) would not be
a candidate.

On the other hand, a database D¢ that additionally contains the
fact Warnings(Tue, 2, tw37, highvoltage) would be a candidate,
since it is not subsumed by any pattern for Warnings.

We remark that base completeness patterns capture exactly the
intersection of the statements defined in [21] and [[17]], as they do
not contain any join conditions, but are purely selections on tables.
We chose the class of completeness patterns because, in contrast to
the previously used statements, base completeness patterns can be
expressed as rows in the same schema as the data.

We now define completeness patterns for queries, such as the
bottom six rows in Table[3] Completeness patterns for queries are
patterns paired with query expressions, for parts of which they as-
sert completeness.

For a query Q with result schema A1, ..., A, we use the short-
hand “attr(Q) = p” to denote the condition “A; = p1 A -+ A
A, = p,”, where a conjunct “A; = %” simplifies to true.

DEFINITION 3 (QUERY COMPLETENESS PATTERN). A que-
ry completeness pattern for a query Q is a pair (p, Q), where p is
a pattern that conforms to the result schema of Q). The associated
query of (p, Q) is @p := Tattr(Q)=p(Q)-

A database D¢ satisfies (p, Q) wrt. D, if Qp(D°) = Qp(D).

Intuitively, a completion D¢ D D satisfies (p, Q) if all answer
tuples ¢ € Q(D°) that match p are already present in Q(D).

Note that a tuple ¢t € R(D®) is subsumed by a pattern p iff
t € Oartr(r)=p(R(D°)). Thus, D satisfies the base pattern (p, R)
wit. D iff 0q44r(r)=p (R(D®)) € R(D). In other words, satisfac-
tion of base patterns is a special case of query patterns if we view
base relations as queries that return the content of a database table.

Completeness patterns can be compared wrt. generality. We say
that pi is more general than p- if every tuple subsumed by p- is
also subsumed by pi. It is straightforward to see that p; is more
general than ps if p; subsumes pa.

For example, the pattern (*, A, *) for the Maintenance table
subsumes (*, A, unknown). At the same time, every tuple sub-
sumed by the second pattern is also subsumed by the first.

Let P be a set of patterns over the same schema. Clearly, sub-
sumption is a partial order on P. A pattern po € P is maximal in P
if there is no pattern in P that strictly subsumes po. Clearly, every
element in P is subsumed by some element that is maximal in P.

We say that P is minimal (wrt. subsumption) if no element is
strictly subsumed by another element. We are interested in minimal
sets of patterns because they do not contain any redundant patterns.

It is straightforward to see that P is minimal if and only if all its
elements are maximal in P. Thus, to minimize a set P of patterns,
one has to eliminate from P all non-maximal elements.

3.3 Problem Statement

We are investigating how to compute query completeness pat-
terns (Def. [3) from base completeness patterns (Def. [I) so that the
results satisfy the following entailment property.

DEFINITION 4 (ENTAILMENT). Let D be a database and P
be a set of base completeness patterns for the schema of D. We say
that P entails a pattern (p, Q) (or P entails p for Q) wrt. D, if all
candidate completions in Cand” (D) satisfy p for Q.

As discussed in Section[I] all patterns in Table [3] are entailed for
Qnw by the base patterns in D.yqine Wrt. Dopging.

It is easy to show that the problem to decide, given some D, P,
Q, and p, whether P entails (p, Q) wrt. D, is coNP-complete in
combined complexity and polynomial in data complexity (that is,
fixing (p, @) and letting D and P vary).

The problem that we investigate in the rest of this paper is, given
a database D, base completeness patterns P, and query (), how
to compute the set of all patterns p entailed for (), or a minimal
representation of that set.



4. PATTERN ALGEBRA

In Section [T we have seen how query completeness patterns can
be computed from base completeness patterns using algebra oper-
ations. In this section we formalize an algebra for completeness
computations analogous to the SPJ fragment of relational algebra,
which in turn captures the single-block SQL queries, and present
experiments regarding the expected size of completeness patterns
and pattern minimization techniques.

Unlike [17]] and [22] which also operate at the schema level and
do not take into account the database instance but are NP-complete
for a fixed query with varying TC statements, the computations we
describe below can be performed in PTIME. Also the pattern al-
gebra presented here does not consider the database instance, but
like in SQL, computations can be performed in PTIME for a fixed
query. The algebra is intended to produce patterns that are correct
and moreover as general as possible. Therefore, whenever possible,
constants get replaced by wildcards. As we will show, the algebra
produces always correct results, and is also complete for those con-
clusions that hold independently of the actual database instance.

4.1 Algebra Definition

The SPJ fragment of relational algebra with equality can be for-
malized using four operations: Selection by constant (o a—4(R)),
projection (m-4(R)), selection by attribute equality (ca=p(R))
and the equijoin (R1 ™Ma=p R2), where R, Ri, R> stand for
generic data relations, not necessarily base relations, A and B for
attributes, and d for a constant.

Note that to ease the presentation, the projection 74 (R) used
here is different from the classical projection. Instead of mention-
ing the surviving attributes, it mentions exactly one attribute that is
projected out. For a given relation schema, classical projection can
be modeled straightforwardly by this one, and vice versa.

In this section we define for each of the above operators an equiv-
alent one operating on relations P of completeness metadata. We
make the distinction between data operators and metadata operators
by adding a tilde character (e.g., &) to the latter.

Decision support queries often include aggregation. Aggregation
can be applied on top of the abovementioned operations. We dis-
cuss completeness calculation for aggregate queries in Appendix[B]

Next, we define each of the four operations of the pattern algebra.
We suppose that P is a relation with the same schema as R, but
while R contains data tuples, P contains metadata, namely patterns
describing the complete parts of R.

4.1.1 Selection by Constant  a—q(P)

For the selection 0 4=q(R), intuitively, only those patterns in P
for R give information about the output that have a wildcard or the
value d at position A. Other patterns are irrelevant.

Example 3. Consider the selection oweek=2(Warnings) in the
introductory example. There are three completeness patterns for
the table Warnings, namely (x,1,%,%), (Mon,2,*,%) and
(Wed, 2, , x). For the result of the selection, the first pattern is
irrelevant, as it talks about week 1. The second and the third pat-
tern are relevant, since they talk about week 2. Furthermore, since
the result may only contain records with week = 2, we can gen-
eralize the last two patterns by replacing “2” with “x”. Thus, the
resulting metadata table looks as shown in Table[2]

Let p[A/*] denote the replacement of the value for attribute A in p
with *. Then, for a metadata relation P, the selection for & a=q(P)
is defined as follows:

Ga=a(P) = {p€ P |p[A] =}
U {p[A/*] | p[A] = d,p € P}.

In summary, patterns with A = * survive the selection unchanged,
while patterns with A = d survive but get generalized.

4.1.2 Projection 7-a(P)

Remember that we consider an atomic projection that
projects away exactly one attribute.

Example 4. Consider the metadata part of the table Warnings,
with the patterns (*, 1, %, *), (Mon, 2, *, *) and (Wed, 2, x, *). If
we project out the day attribute by 7—4ay (Warnings), the projec-
tion (1, %, %) of the first pattern still holds over the resulting table.
For week 2, however, we cannot assert completeness, since e.g.
records from Tuesday could be missing.

Generally, the projections of all completeness patterns with A = x
continue to hold over the projection of the data relation. Formally,
the result of the projection 74 (P) over a metadata relation P is
defined as:

7-a(P) = {m-a(p) | p € P, p[A] = =}.
4.1.3 Selection by Attribute Equality 6 1—5(P)

For a selection 6 4—pg, those patterns say something about the
result that subsume tuples with identical values for A and B, that
is, those patterns, that either have the same value for A and B, or
have a wildcard at at least one of the two positions.

Example 5. Suppose that (d1,d1,e1), (dz2, %, e2) and (x, x, e3)
are patterns for the table R(A, B, C'). Over the result of the selec-
tion o 4—g(R), all three completeness patterns continue to hold.

There are two particularities however: First, some generalized pat-
terns also hold over the result, e.g. for the first pattern, we can
replace one of the constants di by a wildcard, yielding the two
patterns (d1, *, e1) and (*,d1, e1) that are semantically equivalent
over the data selection o a=p(R).

Second, for patterns involving one wildcard and one constant,
such as (da, *, e2), also the symmetric version holds, where the
constant and the wildcard are swapped. In this case, this yields
the pattern (x,d2,e2). While the two patterns are semantically
equivalent over the results of a selection, it is important that both
be present, because possible subsequent projection operations that
project out A would lead to a loss of the first pattern, projections
projecting out B would lose the latter pattern.

For a pattern p, let p[A <> B] denote the operation of swapping
the values at positions A and B. Then, the result of the operation
0 a=p(P) is formally defined as follows:

Ga=B(P) ={p € P | p[A] = xor p[B] = «}
U {p[A < B] | p € P,p[A] = = or p[B] = «}
U {p[A/#] | p € P,p[A] = p[B]}
U {p[B/] | p € P,p[A] = p[B]}.
Example 6. Consider again the patterns (d1, d1, e1), (dz, *, e2)
and (x,*, e3) from above. The result of the selection oa—p(R)

then satisfies exactly the patterns (d1, *, e1), (*,d1, e1), (dz, *, €2),
(*,d2, e2) and (x, *, e3).

Note that in Table [3] for ease of presentation, we have omitted
the generalizations and the symmetric tuples.

4.1.4 Equijoin P <ip go—pr a' P’

Completeness patterns behave in equijoins similar to records in
regular equijoins, with the difference that the wildcard symbol *
joins with any constant. As in relational algebra, equijoins are
equivalent to a combination of a cartesian product of the complete-
ness patterns for R and R’ and a subsequent selection.



Example 7. Suppose we want to compute the metadata join
PMaint D.’qresp:name Ospec=“hw” (PTeams), where PMaint and
Preams denote the metadata of the tables Maintenance and Teams.
The join corresponds to a subexpression of the algebraic expression
in (I that computes the query Q.. Then, we first compute a nor-
mal join between the patterns in the two tables, and afterwards in-
troduce the symmetric versions for those patterns that involve one
wildcard and one constant at the positions name and responsible.
The input and output of this calculation are shown in Table[6]

Formally, we define the result of a join P <ip_s—ps_ 4/ P’ as:
&PAA:P’AA’(P X P,)

Note that one need not actually compute a cartesian product, as
the selection conditions can be pushed directly into the join, thus
yielding a union of four smaller joins.

Aggregation. Decision support queries often contain aggrega-
tions such as COUNT, SUM, MIN or MAX. A discussion on how
the pattern algebra can be extended to these aggregate functions is
contained in Appendix

Soundness and Completeness. In logic, an inference system
is called sound, if all conclusions produced by the system are valid.
An inference system is called complete, if the inference system pro-
duces all valid inferences.

We show below that the pattern algebra is a sound inference sys-
tem, and that it is also complete, if the state of the database is ig-
nored. To avoid confusion, we always write “computationally com-
plete” when referring to the completeness of the algebra.

Intuitively, soundness means that whenever we have complete-
ness patterns for an expression F and apply one of the algebra oper-
ations to E, the resulting expression also satisfies the completeness
patterns calculated by the analogous metadata operation.

Let D be a database, P a set of base patterns for the schema of
D, @ aquery and p a pattern for the schema of ). We write

P, D= (p,Q)

to express that for every completion D¢ € Cand®”(P) it holds
that D¢ satisfies (p, Q) wrt. D. In other words, if D is a com-
pletion of D that satisfies the completeness assertions in P about
the base tables of D, then the p-part of Q(D) is the same as the
p-part of Q(D°). The latter has been expressed formally in Def.
as Qp(D) = Qp(D").

We write P, D = (P, Q) incase P, D = (p, Q) for every p €
P. For queries in relational algebra analogous definitions apply.

PROPOSITION 5 (SOUNDNESS). Let D be a database, P be
a collection of base patterns for the schema of D, and let P and P’
be sets of completeness patterns for algebra expressions E and E’,
respectively.  Furthermore, let op be an operation among
{7‘(’—\,47 O A=d, UA:A/7NA=A’}~ Then:

1. P,D = (P, E) P, D |= (dp(P), op(E)).

2. P,DE= (P,EYN(P',E") implies

P,D 'Z (PD~<1A:A/ P,, E x<iq—ar El).
PROOF. See Appendix[A] [J

implies

Intuitively, the proposition says that if the patterns in P are valid
for E(D), then those computed by op(P) are valid for op(E(D)).
Since the base patterns are valid for the base relations, we can con-
clude soundness for arbitrary expressions by induction.

Before proving the completeness of the pattern algebra, we have
to differentiate patterns into meaningful and meaningless patterns.

Example 8. Consider the selection ogpec—«nw» Over the table
Teams(name, specialization). Over the result of this selection,
the pattern (x, software) can never subsume a record, as there can
never be software teams in a table that was selected as only con-
taining hardware teams.

We say that a query completeness pattern (p, E) is satisfiable
if there exists a database D such that E(D) contains at least one
record that is subsumed by p.

Clearly, the pattern algebra cannot compute all entailed patterns,
since there may be infinitely many. Instead, it will already be
enough if it computes all satisfiable ones, and among those, only
the maximally general ones. To make this formal, we need some
notation.

Given a set of base completeness patterns P, and a query pattern
(p, E), we write

PE(p,E)

if for all database instances D it holds that P, D |= (p, E).

If E is an SPJ-algebra expression, then E is the corresponding
expression in the pattern algebra, obtained by replacing every op-
erator in E by its ~-counterpart. Then E(P) is the set of patterns
produced by evaluating FE over P.

Given a pattern p and a pattern relation P, we write p < P if
there is some pattern in P that subsumes p.

We can now prove algorithmic completeness of the pattern alge-
bra for satisfiable patterns when neglecting the state of the database.

PROPOSITION 6 (COMPLETENESS WITHOUT INSTANCE).
Let P be a set of base completeness patterns, 2 an SPJ-algebra ex-
pression and (p, E) a satisfiable query completeness pattern. Then

P (p,E) implies p= E(P).
PROOF. See Appendix[A] [J

The proposition states that if a satisfiable query completeness
pattern (p, E) is a logical consequence of P, then we can evaluate
the corresponding pattern algebra expression E over P and find a
p’ in the result that is at least as general as p.

A corollary of soundness and completeness is that for any two
equivalent relational algebra expressions, completeness patterns com-
puted by the pattern algebra are equivalent.

One can show as another property of the pattern algebra that it
never introduces redundancies, that is, if the completeness patterns
for the base are minimal, then also the pattern sets computed by
any algebra expression are minimal.

This means that for a an expression £ and a minimal P as input,
the output F(P) is identical for all equivalent expressions and thus
does not depend on the specific expression.

4.2 Experiments Using Wikipedia Data

In all experiments that follow, the implementations were done
in Java, using a PostgreSQL database, and executed on a machine
with 2.4 Ghz and 4 GB RAM.

To show the feasibility of our approach, we used a semiauto-
mated scraping technique to identify 21 completeness statements
from Wikipedia for tables about cities, countries and schools. We
also extracted 10k schools and 200 countries from DBpedia, and
55k cities from OpenGeoDB and geodatasource.com. Note that
DBpedia does not extract all the information in Wikipedia.

We then created seven join-queries over these tables and com-
pared the time needed for query evaluation with the time needed
for completeness calculation. The median query execution time
was 2290 ms, while the median completeness calculation time was



Maintenance
ID | responsible |  reason
tw37 A disk failure Tapeo— iy (Teams)
tw59 D software crash name | spec
tw83 B unknown -

- 1 A hardware
tw140 C update failure B hardware
tw140 C network error = -

: =~ F | |
% B *
% C *

Maintenance MXresp=name (Ospec=“hw” (Teams))
M.ID | M.resp, | M.reason | T.name | T.spec.
tw37 A disk failure A hardware
tw83 B unknown B hardware

* A * * *
k B * ES k
% C * k %
%k 3k * A %k
k * * B k
k * * C k

Table 6: Completeness information for the join between Maintenance and ospec=“hw” (Teams)

543 ms, which implies that the completeness calculation took 23%
of the time of the query calculation.

The query for which completeness calculation took longest com-
pared with query evaluation was the query:

SELECT » FROM country, city
WHERE country.capital=city.name

For this query, execution took 30 ms while completeness calcula-
tion took 797 ms. The query for which the completeness calcu-
lation took shortest compared with the query evaluation was the

query:

SELECT % FROM city, school
WHERE city.state=school.state

For this query, execution took 175 seconds while completeness cal-
culation took 421 ms.

Both results can be explained by the size of the query results.
While the first query is highly selective and produces only 278
records, the second produces 3 million records. In contrast, the
number of completeness patterns computed for query results was
between 9 and 100 (median 46) for the seven queries, and the time
needed for their calculation exhibited a much lower variance with
arange between 397 and 991 ms.

The results for each query are listed in Table[7]in the Appendix.

4.3 Number of Patterns

To understand the possible overhead of computing query com-
pleteness patterns, it is necessary to understand how large sets of
completeness patterns for base tables may actually be in applica-
tions. We synthetically created completeness patterns to measure
the number of patterns wrt. the size of the data. The main con-
clusion is that over real data, the number of completeness patterns
remains reasonably small compared with the normal data.

Test Case Generation. We believe that a typical situation may
be one where most parts of a dataset are complete, and only a few
records are missing. We also assume that in completeness patterns
only attributes with a relatively low number of distinct values are
used, which naturally correspond to the dimension tables in data
warehouses.

After identifying such a set of attributes, we proceeded in our
experiments as follows:

e We loaded a dataset.

e We assumed the most general pattern (*,*,...,%*) to hold
over the loaded dataset.

e We then repeatedly selected one record from the data set,
which we dropped. Whenever some of the completeness pat-
terns asserted for the dataset would subsume this record, they

would cease to be true, so we dropped those patterns, and
tried to add instead all possible most general specializations
that continued to hold over the dataset.

For instance, if from the original Teams table we dropped a
hardware team, the (x, *, ..., %) pattern would not be correct any
more. Instead, we would insert specializations that only assert com-
pleteness for software and networking teams.

We also experimented with two strategies for dropping records.
In the first, the dropped records were selected purely at random.
However, in reality, causes for missing data may lead to system-
atic data loss. We therefore investigated whether dropping related
records leads to a different structure of completeness patterns than
dropping random records.

Sample Cases. We first did experiments on a network element
table from a network provider. The table has 64 attributes and 760k
records. Among those 64 attributes, we manually identified six
attributes that qualified as dimension attributes and seemed plau-
sible for completeness patterns: region_name (6), technology (3),
vendor (7), technology_capability_type (6), sector (13), and state
(53), where the numbers in parentheses report the number of dis-
tinct values present in the data. Multiplying these numbers, we find
a total of 1,185,408 possible different completeness patterns. In
the data, only 1,558 combinations (0.205%) were present. Also,
the frequency of these combinations was exponentially distributed.

As comparison we used the lineitem table from the TPC-H bench-
mark (scale factor 1), where we manually selected seven attributes
which had few distinct values, leading to 460,800 possible com-
pleteness patterns. Of these, in the dataset of 6 million records,
73,419 combinations (1.22%) were present.

Skewed data generators for TPC-H appear in the literature (5|
8Jl, but the tools are not publicly available. Also the more recent
TPC-DS benchmark does not provide realistic data, as skew ap-
pears there only in a few fields such as “names”, and fields are not
correlated.

Experiments. We first dropped random records from our net-
work element table. It turned out, that the number of complete-
ness patterns converged after 300 dropped records at around 1000
completeness patterns. The likely explanation is that due to the
few combinations in the real data set and due to the correlations,
most dropped records have the same values as previously dropped
records and therefore do not lead to further specialization of pat-
terns. A graph is shown in Fig.[T]

We tried the same method on the TPC-H dataset, where the num-
ber of completeness patterns did not show any convergence be-
haviour (same figure). A likely reason is that there are no corre-
lations in the TPC-H dataset.
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Figure 2: Number of completeness patterns for real data with
systematic data loss.

Finally, we tested dropping related records. As indicator for
relatedness we used the names of the network elements, because
these names are not purely random but often carry some seman-
tics. We dropped elements sharing three different prefixes of their
names (Cnu, Dxu, Clu). It turned out that in all cases, the number
of completeness patterns needed to describe the remaining com-
plete data converged more quickly and was smaller. The results are
shown in Fig.[2] Note that curves increase whenever some violated
pattern can be specialized, and decrease if violated patterns cannot
be specialized any more.

Conclusions. We draw three conclusions from these experiments:

First, we see that the number of completeness patterns is relatively
small compared to tuples in the data. Second, we see that when
data loss is due to systematic reasons, the number of completeness
patterns may be even smaller. Third, we see that this only applies
to data sets which show skew and correlation, while for data sets
that do not have these characteristics, the number of completeness
patterns may be much higher.

4.4 Minimization of Sets of Completeness
Patterns
Completeness patterns can subsume each other. Redundancies
or replications could be reasons why that happens in practice, e.g.
when first team A reports that data for itself is complete, and later

a department head reports that data for all teams is complete. Re-
dundancies can also occur due to additional inferences drawn when
considering the state of the database instance, as will be shown in
Section

A naive approach to minimization of sets of completeness pat-
terns is pairwise comparison, however, already for 10k patterns,
the runtime of this approach was more than 100 seconds, and the
complexity is quadratic.

Since the experiments in the previous section showed that 1000
completeness patterns is a realistic input size, and pattern sets can
grow quadratically in joins, we consider the minimization of sets
of patterns a crucial operation.

There are two aspects to minimization that allow for optimiza-
tion:

1. The approach how patterns are processed. We investigated
three approaches, which we call all-at-once, incremental, and
sorted incremental.

2. The choice of the data structure. We analyzed naive sets,
hash tables, path indexes and discrimination trees, that latter
two being data structures borrowed from the area of theorem
proving, where a related problem of pattern minimization oc-
curs.

We discuss each of these in detail below. As approaches and data
structures are orthogonal, we use numbers 1 to 3 for referring to the
approaches, and letters A to D for referring to the data structures.

Approaches. The first and most straightforward approach to min-
imization is (1) all-at-once processing. In this method, all patterns
are loaded into memory, then for each pattern it is checked whether
it is subsumed by some other pattern (see Subsection@). Naively,
this requires quadratic time, but data structures like hash tables,
path indexes or discrimination trees can speed up this check.

Another approach is (2) incremental processing. Here, each pat-
tern is loaded separately, and subsequently compared with the max-
imal patterns among the ones that already have been loaded. The
comparison requires both to check whether the pattern is subsumed
by one of the already loaded patterns (subsumption checking), and,
if that is not the case, to find the patterns among the already loaded
ones that are subsumed by the new pattern (supersumption retrieval).

An extension of incremental processing is (3) sorted incremental
processing. When completeness patterns are sorted in decreasing
order wrt. the number of wildcards they contain, then no later pat-
tern can entail an earlier pattern, because subsumption requires that
the subsuming pattern has more wildcards than the subsumed pat-
tern (except for duplicate patterns). Therefore, incremental sorted
processing does not require supersumption retrieval.

The advantages of the incremental approaches are that, given that
the set of maximal patterns is sufficiently smaller than the input,
these methods require less memory.

Data Structures. Lists (A) are the most basic data structure,
which we use as baseline. Using lists, a single subsumption check
or supersumption retrieval requires linear time wrt. the number of
patterns, thus leading to a quadratic algorithm.

Hash tables (B) can be used to achieve faster subsumption checks:
Given a pattern, checking whether it is subsumed by some stored
pattern can be done by explicitly generating all generalizations of
that pattern, and checking whether any of those is stored in the hash
table. However, the number of generalizations of a pattern is expo-
nential in the number of constants in the pattern, as each way of
replacing some constants with wildcards yields a generalization.
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In the Al community, similar problems occur when managing
sets of terms used in theorem provers. Besides the subsumption
checks and supersumption retrieval, theorem provers also need to
be able to find instantiations and unifiable patterns. Also, theorem
provers need to deal with terms that involve repeated variables and
function symbols. There are two classical techniques for term in-
dexing: discrimination trees and path indexing [20].

Path indexes (C) are similar to inverted indexes. The idea is to
create a list of occurrences for each symbol (constants and wild-
card) at each position. To find subsumed and supersumed patterns,
relevant lists then have to be intersected or merged. Especially
the intersection is expensive, leading to a poor performance of the
method in our experiments.

Discrimination Trees (D) are essentially tries over completeness
patterns, which treat the wildcard value in the same way as other
constants. An example of a discrimination tree is shown in Fig. 3]
Given a pattern p, subsumption checking is done by a search from
the root, which at any node n at level ¢ always continues searching
in branches labelled with x, and if p[¢] = d, also searches branches
labelled with d. Thus, subsumption checking requires search with
a branching factor of at most 2. Supersumption retrieval, on the
other hand, considers the branch labelled with d, if p[¢] = d, and
if p[¢i] = =, then all branches. Thus, the branching factor is only
limited by the branching factor of the discrimination tree.

Experiments. In the experiments, we used random subsets of
one million completeness patterns generated as the result of a carte-
sian product between two tables with 1000 patterns each.

In Fig.[d we show the runtime comparison. It turned out that the
all-at-once approach was faster than the two other approaches, and
that for this approach, discrimination trees (D1) were 25% faster
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Figure 5: Space comparison of minimization using discrimina-
tion trees and hashing.

than hashing (B1). Pairwise comparison (A1) and path indexes
(C2) turned out to be totally inapplicable, the latter possibly due
to the few attribute values appearing in our use case.

In Fig.[5] we compare different approaches in combination with
discrimination trees and hash tables regarding the space needed.
Here, the sorting approaches (B3 and D3) perform clearly best,
while the all-at-once approaches, as expected, consume an amount
of space that is linear in the input size. The fact that the sorted ap-
proaches consume even less space for 600k patterns than for 400k
is consistent with calculations that show that the number of maxi-
mal patterns decreases when using more than 300k random patterns
out of the one million patterns.

Conclusions. We conclude that regarding space, approaches that
sort the input first perform best, while regarding runtime, approaches
that process all patterns at once perform best. While regarding
space there is no difference between the best discrimination tree
and the best hashing method, regarding runtime, discrimination
trees are consistently faster than hashing. The advantage of dis-
crimination trees is likely to increase when more attributes (here
twelve) are used for completeness patterns.

S. MAKING THE PATTERN ALGEBRA
INSTANCE-AWARE

So far we have computed completeness patterns for queries only
from the patterns that hold for base relations. However, as seen
in the motivating example, additional inferences are possible when
taking into account also the tuples in the database instance. In this
section we argue that such an extension of the pattern algebra brings
about benefits, show that instance awareness may be expensive in
theory, and evaluate the efficiency of the extended algebra on a test
case.

5.1 Join Extension

In the motivating example we saw that patterns in a join result
can sometimes be summarized to more general patterns. Let us
look at that case again in more detail.

Example 9. Consider again the join
M >IM .resp=T.name Ospec=“hw” (T)y

whose computation is shown in Table[6] We see that the only com-
pleteness pattern for ospec=«hw> (T') is (*, *). We also see that the
only records in 7" that match this pattern are (A, hardware) and



(B, hardware). This allows us to conclude that all records appear-
ing in the join result must have either the value A or B for the at-
tributes M.resp and T.name. We also see that the metadata for M
contains two patterns (*, A, *) and (*, B, ), which contain exactly
the values A, B in the second position, the join position, and which
are identical in the other positions.

We therefore conclude that these two patterns cover all possible
values that can appear in the join result, and that the result patterns
(%, A, %, %, %) and (x, B, x, %, %) can therefore be promoted to the
more general pattern (k, , , *, %) for the join result. As a conse-
quence, we know that the entire results of the join is complete.

The preceding example illustrates that promotion of statements
gives some benefits. First, it allows one to identify larger parts of
the query result as complete. Moreover, the new pattern subsumes
all the promoted patterns and thus leads to a more compact repre-
sentation. More general statements with a * in more attribute posi-
tions can also survive more projection operations, since a pattern p
over R only gives rise to an element in 7— 4 (R) if p[A] = *. As
discussed in Appendix [B] aggregation bears some similarity with
projection and thus more general statements allow one also to rec-
ognize more results of an aggregate query as correct.

Next, we show with an extended example how based on this idea
one can define a general promotion technique for joins. Consider
two tables R(A, B,C), R'(A’, B') as shown below, and the join
query RX4_4 R,

R R
A|B|C A B
g

p1| @ c * b g
pa| b | * | d c | h
psla|e|d p/

Clearly, all three patterns of R join with the pattern of R’, be-
cause the latter has a “x” in the join position. The result records of
the join all have the constant a or b in the join positions because
R does so. We show how we can infer more general completeness
patterns if we take into account the records in R'.

Let us consider first the pattern p” over R’. The only records in
R’ that match p’ are (a, g) and (b, g), and since p’ is a completeness
pattern, these are all such records that one will ever find in R’.
Thus, the only values that can possibly occur for attribute A’ in a
match of p’ in R’, the “allowable domain” for A" with respect to
p’, so to speak, are a and b. We can retrieve these values from
the instance D with the project-select query 74/ (0 5/—4(R'(D)))
where R'(D) denotes the instance of R’ in D.

Now, we move to the patterns for R. Suppose, the pattern p, =
(*, ¢, d) would hold over R. Then we could conclude that the con-
catenation py - p’ = (%, ¢, d, *, g) holds over the join R M _ 4/ R'.
In fact, ps - p’ does hold over the join. Since p; holds over R,
also the specialization (a, ¢, d) holds, and since ps holds over R,
also the specialization (b, ¢, d) holds. Thus, both (a, ¢, d, *, g) and
(b, ¢, d, %, g) hold over the join. However, as seen above, a and b
are the only possible values for A" in R’, and thus, they are also the
only possible values for A in the join R X 4— 4. R’. Consequently,
(*, ¢, d, *, g) holds, which has the “x” in A that, intuitively, has
been transferred from A’. We say that (x, c, d, %, g) has been ob-
tained by “promoting” the statements p; and p2 using p’.
Allowable Domain: Let us discuss which difficulties can arise in
applying this technique. We make a promotion attempt for every
pattern p’ over R’ that has a “x” in the join position A’. To this
end, we construct a project-select query out of p’ that retrieves the

allowable domain A’;‘/, for A’ with respect to p’, which consists of
all A’-values of records in R’ that match p’. In the example above,
we had A’;‘/, = {a, b}. This step is easy.

Choice Sets: Having identified the allowable domain, we look for
all possible choice sets of patterns over R, that is, sets that contain

for each value in Ai’, one statement with that value for the join at-
tribute A. In the example above, {(a, ¢, *), (b, *,d)} was a choice
set, and {(a, e, d), (b, *,d)} is another one. A potential difficulty
is that there may be exponentially many choice sets.

Then we check for every choice set whether, together with the

initial pattern p’ over R/, it can be promoted. To this end, we re-
place the A-values in the records of the choice set with a “x” and
check whether the resulting pattern set is unifiable, that is, whether
for every attribute position there is at most one constant that oc-
curs in that position in the set. In the example above we obtain
{(*,¢,%), (%,%,d)}, and {(*,e,d), (x,*,d)}, which clearly are
unifiable.
Unification: If the check is positive, we compute the unifier, that
is, the most general pattern that matches every pattern in the set.
The unifier has a constant in those positions for which there is a
(single) constant in the set and has a “x” in the other ones. Thus,
the unifiers in our example are (x,c,d) and (x,e,d). Checking
unifiability and computing unifiers is conceptually easy.

The promoted statements are then obtained by concatenating the
unifiers of the unifiable choice sets with the initial pattern p’. Thus,
in the example, the promoted statements are (x,c,d,*,g) and
(x,e,d,*,g).

So far, we have discussed how to use statements over R’ to pro-
mote statements over R. Of course, this can also be done in the
reverse direction, from R to R’.

To incorparate promotion into the pattern algebra, we introduce
the join operator

Pray_y P

that first computes P t<i4— 4 P’ and then adds all patterns that can
be obtained by promotion in either direction. The algebra with this
join operator is the instance aware algebra.

Soundness and Completeness. As for the pattern algebra,
the computational properties of the extended algebra are of interest.
It is easy to show that the instance-aware algebra is sound. Re-
garding the computational completeness, we conjecture that the al-
gebra is complete for inferences wrt the state of the database, for all
queries in which no attribute is reused in joins (e.g. the query Qpw
is in this class). As we show however in Appendix [E] for general
queries the pattern algebra with promotion is still not complete.

5.2 Runtime and Space Effects of Promotion

Promotion is possibly expensive, because for an initial pattern
p’ over R’ we iterate over all choice sets of patterns over R, to
perform the unifiability check and possibly compute a promoted
statement. As the number of subsets of a set and therefore the
number of choice sets can be exponential, this iteration may be
expensive. Furthermore, as each unifiable choice set gives rise to a
new completeness pattern, the output of promotion may also have
exponential size.

We discuss here possible optimizations, and present experimen-
tal results regarding the runtime and space effects of promotion.

Implementation of Promotion. Given an initial pattern p’
over R’, promotion considers all choice sets of patterns over R

that contain one pattern p with p[A] = d for every d € A%, It



is natural to implement the procedure to find all such choice sets
S by first splitting P, the set of patterns over R, into so-called A-
sets, that is, one set for each value appearing at position A. Given

’
Af_‘/, choice sets S to test for unification are then all sets which are
composed by choosing exactly one pattern from each A-set whose

value appears in A%,
There exist a few optimizations to this procedure:

o Trivial failure: If one A-set required by AQ/, is empty, pro-
motion is impossible.

e Pruning: Instead of choosing one pattern from each A-set
and then testing for unification, one can test unification “on-
the-go”, whenever choosing one more pattern. Thus, if e.g.

Af:, has size 5 but already the first two chosen patterns are
not unifiable, there is no need to choose patterns from the
other A-sets.

o Subsumption detection: Similarly to pruning, if an interme-
diate unifier is already more specific than a pattern computed
for the result, any patterns retrieved using this unifier will be
redundant and therefore the search can be pruned.

e Due to the previous optimizations, the iteration order of the
A-sets can play a role. As common in search problems, it
turned out that starting with the smallest sets gave the best
results.

In the following experiments, these optimizations reduced the
number of sets to be tested by 40% to 99%.

Experiments. When using pattern promotion, two questions
arise: first, how the runtime is affected by iterating through pos-
sibly exponentially many sets, and second, what effect promotion
has on the number of patterns in the output of a join.

We evaluated both aspects in two typical scenarios. The first is a
join of a fact table with a dimension table, which is considered to be
complete. The second is a join between two partially complete fact
tables. For both experiments, we used the network element table
from Section[d.3] and in the latter case performed a selfjoin.

The results for the join of the fact table with the dimension ta-
ble were that the median runtime of the join was between 91 and
661 milliseconds for various join attributes, opposed to a table scan
taking 37 seconds. Nevertheless, for the two attributes with the
highest cardinality, 5% and 10% of the runs took longer than 30
seconds and were considered as timeouts.

For the join of the two partially complete fact tables, we observed
a quadratic growth of the runtime wrt. the number of input patterns,
similarly as one would expect it from normal joins.

For both kinds of join, the promoted patterns, instead of leading
to a bigger output, lead to a smaller output, because they subsumed
other statments in the output. For the join of the two partially com-
plete tables, this reduction was especially significant, causing a re-
duction between 80% and 95%. In no case promotion lead to an
increased output size. More details on the experiments and graphs
are shown in Appendix

6. DISCUSSION

In this section we discuss aspects concerning the source of com-
pleteness patterns and implementational issues.

Source of Completeness Patterns. We have already discus-
sed the source of completeness information in some scenarios. To
generalize those observations, we believe that in domains where
data is loaded automatically, such as stream processing [[12] or feed
management [25]], completeness patterns should also be generated

in an automated way by the loading system. On the other hand, in
applications where data is created by humans, completeness pat-
terns cannot be automatically generated. Instead, their creation
should become part of the workflow used to enter the data. Con-
cretely, web interfaces that allow to enter data could e.g. contain
fields that allow to specify that all data of a certain kind was en-
tered.

Storage. A first question is how to store completeness patterns
in an RDBMS. The conceptually straightforward solution is to in-
troduce one metadata table for each table. For storing the wildcard
value (“*”), one either has to use new data types that extend pre-
vious data types by allowing the wildcard value, or, for data types
such as string, one may use string escaping techniques.

Placement of Reasoner. The next question is the placement
of the completeness reasoner. It could either be placed within the
DBMS itself, e.g. as plugin, or it could be placed outside as an
independent component. While the pattern algebra works only on
the schema level, the subsequently introduced promotion operator
needs access to the database content, and would therefore benefit
from fast access to the database content. The advantage of placing
the reasoner outside the DBMS would be that the reasoner could
work independently from a specific database.

Plan Generation and Execution. One way to do complete-
ness reasoning is to attach it to the normal query evaluation: While
the query result is computed in the database, for each algebraic
operation applied to the data, in parallel, we execute the corre-
sponding operation on the metadata. This may however lead to
sub-optimal computation of completeness. Because the metadata
can be very different from the normal data in size and distribu-
tion, the optimal plan for query computation may not be the opti-
mal plan for completeness calculation. A proper implementation
might therefore benefit from having its own cost model to use for
optimizing the metadata query plan. We leave this as future work.

7. CONCLUSION

In this paper we have discussed that in many applications such as
loosely coupled cloud databases, collaborative editing and network
monitoring, databases should be considered partly under closed-
world and partly under open-world semantics, and showed how that
can be formalized using completeness patterns. We then investi-
gated the problem of computing completeness patterns for query re-
sults over such databases. We presented the pattern algebra, which
operates purely at the schema level and can be executed analo-
gously to relational algebra, and then discussed extensions using
the promotion operator to make use of inferences possible due to
the database instance. We highlighted implementational challenges
regarding the minimization of sets of completeness patterns and the
computation of promoted completeness patterns. We used two real
data sets to empirically demonstrate the utility and scalability of
our techniques in practice.

An interesting extension would be to take into account constraints
such as keys, foreign keys, inclusion or functional dependencies.
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APPENDIX
A. PATTERN ALGEBRA PROPERTIES

In this section we give the proof for the soundness of the pattern
algebra, and for the completeness of the pattern algebra when the
state of the database instance is neglected.

PROPOSITION 5 (SOUNDNESS). Let D be a database, P be
a collection of base patterns for the schema of D, and let P, P, and
P> be sets of completeness patterns for algebra expressions E, E1
and F», respectively. Furthermore, let op be an operation among
{m-a,04=q,04=p}. Then:

1. P,D = (P,E) implies P,D = (dp(P),op(E)).
2. P,D E (P, Ev) A (P2, E2)  implies
P,D = (Pia=p P2, E1 Ma=p E»).

PROOF. 1. 0p = 04=4 (Selection by constant): This operation
is correct for two reasons: (1) because patterns with A = x clearly
continue to hold when some tuples are dropped; (2) because the
result of a query o a—4(E) cannot contain any tuples ¢ with values
t[A] # d, and therefore, whenever a pattern p with p[A] = d is in
the metadata, the same pattern can also be generalized by replacing
d at position A with *.

1. op = m-a (Projection): This operation is correct because
wildcards cover all possible values and may therefore be projected
out.

1. op = oa=p (Selection by attribute equality): This operation
is correct, because the query result table can only contain tuples
t with t[A] = t[B], and thus, completeness patterns (d,d,...),
(d,*,...) and (x,d,...) are equivalent (assuming wlog that A, B
are the first two attributes).

2. 1 (Equijoin): This operation is correct, because, as for selec-
tion by attribute equality, the result can only contain tuples satisfy-
ing symmetry, and thus, the various patterns (d, d, . ..), (d,*,...)
and (x,d,...) produced by the variable selection on top of the
cartesian are equivalent. [

PROPOSITION 6 (COMPLETENESS WITHOUT INSTANCE).
Let P be a set of base completeness patterns, E an SPJ-algebra ex-
pression and (p, E) a satisfiable query completeness pattern. Then

Pl (p,E) implies p= E(P).

PROOF. We prove the claim by induction over the height of the
expression E.

Base case: The height of the expression E is one, that is, the
expression is exactly some base table R. Then, the completeness
patterns for E are exactly the completeness patterns of the form
(p, R) in P, and thus the algebra is complete.

Induction hypothesis: The algebra is complete for expressions
up to size n.

Induction step: Show completeness for expressions of size n+1.

We make a distinction of cases, depending on the outermost op-
erator in I

Selection by constant: Suppose E is of the form o 4—q(E") and
(p, E) is satisfiable. Let D be a database that satisfies (p, E'). Then
thereisat € E(D) such that p subsumes ¢. As t[A] = d, if follows
that p[A] is either d or *.

Since (p, E) follows from P, this implies that in all comple-
tions D¢ for any D wrt. P, the equality op—ur(g)(E(D)) =
Op=attr(E) (E(Dc)) holds.

We can now move the selection g 4—4 from E directly into the
outward selection and find that also op[a/dj=attr(57)(E' (D)) =
Op(A/dj=attr(£") (B (D)) holds. But this implies that P entails
the completeness pattern (p[A/d], E'), and hence by the induction
hypothesis it holds that p[A/d] < E'(D).

By the defininition of the algebra operation for selection by con-
stant, it follows that p < E(D).

Projection: Suppose E is of the form 74 (E’) and (p, E) is
satisfiable.



It follows that in all completions D¢ for any D wrt. P, the equal-
ity 0p—attr(E) (E(D)) = O p=attr(E) (E(D®)) holds.

By the inclusion D C D€, we can also include the attribute A
that was projected out into the condition of the selection, and arrive
at the equality O (x,p)=attr(E’) (E/(D)) = O(x,p)=attr(E') (El (DC))
(because, due to the bag semantics and the inclusion, any violation
of the latter equation implies also a violation of the former equa-
tion).

But this implies that P entails the query completeness pattern
((x,p), E") and hence, by the induction hypothesis, it holds that
(*,p) = E'(P). By the defininition of the algebra operation for
projection, it follows that p < E(P).

The cases of selection by attribute equality and of equijoin are
analogous. [

B. AGGREGATION

Decision-support queries often include aggregation. For instan-
ce, it may be interesting to count the number of cities in a certain
country, to sum up populations, or to obtain the country with the
largest population.

The pattern algebra can naturally be extended to aggregation op-
erators. Because aggregation corresponds to a form of negation, as
Lang et al. observed [[T6]], incompleteness of the database may lead
to incorrect records in query answers.

Consider for instance a query for the number of cities in each
country. As seen in Table ] Wikipedia is complete for all cities
in Bulgaria, but not for all cities in France. So if in reality there
were 700 cities in France, but Wikipedia contains only 200, then
the query answer will not only be incomplete (it misses the record
(France,700)), but also incorrect (it contains the record (France,200).

Fortunately, completeness patterns as derived by the pattern al-
gebra also guarantee correctness. Whenever cities in France are
complete, this implies that the number of cities in France is also
correct.

In our framework, one can extend the pattern algebra by ad-
ditional operators for simple aggregation operations, that project
away all attributes not mentioned in group-by statements.

For instance, the query

SELECT country, count (x)
FROM City
GROUP BY country

could be computed using a count operator on top of 7 country (City).
The count operator would extend completeness patterns by a
wildcard for the count value: Given the statements in Table ] the
query for the number of cities per country would satisfy the follow-
ing patterns: (Germany,*), (Ukraine,*), (Bulgaria,*). Extensions
for the aggregate functions SUM, MIN and MAX are analogous.

C. QUERY STATISTICS IN THE WIKIPEDIA

USE CASE

In Table[7] we report the result size and the compute time for the
SQL queries used in the experiments in Section[4-2]

D. PATTERN PROMOTION EXPERIMENTS

In the following, we give details about the evaluation of the run-
time and the space growth due to promotion in use cases. We use
the same network element table as in Section[#.3} and focus on two
kinds of joins:

The first and in a data warehouse most straightforward case is the
join of a fact table with a dimension table. It is reasonable to as-
sume that dimension tables are complete. We therefore model this
case by joining the table from our use case, augmented with com-
pleteness patterns using the method presented in Section 3] with
a unary second table that contains a random subset of all values
appearing for the join attribute in the use case table (these values
determine Val in the algorithm), and where the second table is as-
serted to be complete.

The second case is the join between two fact tables, which are
both only partially complete. We simulate this by a selfjoin be-
tween two versions of our use case table.

Join with a Dimension Table. The first experiment was on
measuring the number of sets S that had to be checked for unifi-
ability by the promotion algorithm. As input we used 1000 com-
pleteness patterns. Table [§] shows the result of these experiments
from 100 runs for each row. One can see that despite the large
number of combinations S to be tested naively, the calculations are
feasible in most cases. However, for two attributes, namely state
and sector, some runs exceeded a timeout threshold of 30 seconds.
As we can also see, the median runtimes were between 91 and 661
milliseconds. For comparison, a table scan of the network element
table with 700,000 rows took 37 seconds. We also see that the
number of patterns in the output is smaller than the input, and that
the number of promoted patterns is comparably small. This means
that, by subsuming other patterns, the promoted patterns lead to a
reduction of the output size.

The reason why attributes behave differently even if they have
a similar number of distinct values is probably the distribution of
these values. E.g. the attribute tech_capability has one value occur-
ring with > 99.9% frequency.

We draw two conclusions: First, the runtime is feasible in most
cases, though there may also be some timeouts, and second, pro-
motion leads to a reduction of the number of patterns in the output.

Join Number Size of Promoted | Size of S Runtime
attribute of distinct | minimized | statements | naive in ms
attribute output in minimi- | (avg) (median)
values [EV:4] zed output
vendor 1*107
region 6 751 39 7.9%107 521
technology 3 801 22 3.6%10! 241
tech_capab- 6 202 2 1 130
ility
661 (+4%
sector 13 806 22 1t COLEA%
timeouts)
o
state 53 929 7 2.1¥10%2 9.1 (b2t
timeouts)

Table 8: Runtime analysis of a join of a table with a complete
dimension table. Each time, 1000 completeness patterns are
used.

Join of Fact Tables. In our second scenario we model a join
between two tables that are partially complete by a selfjoin of the
network table. We used 50-150 randomly chosen patterns among
the 1000 ones that were generated as shown earlier. The results in
Table |§| show that also in this case, the number of patterns in the
output does not blow up exponentially. Rather, the results show
that while the number of completeness patterns grows quadrati-



Query Metadat_a # records # metadata

Query ) computation records
runtime (ms) . query result
runtime (ms) query result

SELECT * FROM country, city WHERE country.capital=city.name 30 797 278 10
SELECT * FROM country, school WHERE country.name=school.country 260 409 5467 9
SELECT * FROM city, school WHERE city.state=school.state 175000 421 2958000 46
SELECT * FROM country, school WHERE country.capital=school.city 160 397 297 9
SELECT * FROM country, city, school WHERE country.capital=city.name 2040 900 25891 46
AND city.state=school.state
SELECT * FROM city cl, city c2 WHERE cl.name=c2.name 4180 991 145659 100
SELECT * FROM school s1, school s2 WHERE s1.name=s2.name 2540 460 42282 81

Table 7: Result size and compute time for data and metadata for the queries used in Section@
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Figure 6: Growth of runtime wrt. number of completeness pat-
terns in a selfjoin, 20 runs per point, with 1000 tuples in the
database.

cally before minimization, removal of subsumed patterns (which
are subsumed by promoted patterns) gives a final result size that is
less than quadratic.

One can also observe a high variation between different attributes.
For tech_capability for instance, the minimized output contains
only 61 patterns. The reason is that the attribute tech_capability
has only three different values, so whenever only two values are
present, the chance is high that for those two values completeness
patterns exist. Out of the 100 patterns that could be promoted (50
on each side of the join), 61 got promoted, and these 61 patterns
then subsume all other patterns that resulted from the regular join.

Join Statem- | Size of Size of Promoted Saved
attribute entsin nonmin | minimized | statements statements
input imized output in minimized | per
output output promoted
statement
vendor 100 9,792 930 232 38
region 100 9,499 1031 224 38
technology 100 10,216 523 236 41
tech_capa- 100 10,168 420 168
bility 58
sector 100 6,945 932 103 58
state 100 2,118 467 21 79

Table 9: Growth of completeness patterns in a selfjoin. Notably,
the number of patterns in the output does not increase due to
promotion but even decreases.

For the state attribute on the other hand, there are 53 values,
so any random subset still has a large cardinality and it is unlikely
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Figure 7: Growth of runtime wrt. number of attributes, 100
runs each using random attribute sets and join values.

that one finds in only 50 patterns enough patterns that together are
unifiable for promotion. So as only 17 patterns get promoted, the
promoted patterns subsume only few patterns from the regular join
and therefore the minimized result has the highest cardinality com-
pared with the other join attributes.

We draw three conclusions: First, the runtime in a join of fact
tables grows quadratically in the number of patterns for the input
tables (Fig. [B). Second, the runtime grows polynomially wrt. the
number of attributes used (Fig.EI). Third, promotion leads to a sig-
nificant reduction of the number of patterns in the output (Table[J).

E. TOWARDS ALGEBRAIC
COMPLETENESS

One may wonder whether the pattern algebra extended by the
promotion operator is computationally complete. Unfortunately, as
shown below, this is still not the case. In this section, we discuss a
further extension to the pattern algebra, which introduces additional
unsatisfiable patterns in intermediate results, which may be needed
for computational completeness.

Recall from Example |§| that completeness patterns can be un-
satisfiable. The example was about the fact that after a selection
by “specialization = hardware”, the resulting table is certainly
complete for software teams.

While one might consider such patterns as unintuitive and irrele-
vant, the following example shows that not producing these patterns
may lead to missing relevant conclusions in subsequent operations:

Example 10. Consider M X resp=T.name Ospec=<hw” (T')
again, the join shown in Table@ The patterns (*, C, *, *, *) and
(*, %, %, C, %) seem meaningless, because, due to the completeness
pattern (*, *) for ospec=nw(7’) we know that A and B are the only
hardware teams, and therefore, the join result cannot contain any
rows for team C. We call these patterns therefore zombie patterns.



Can we just drop these meaningless patterns? The contrary is
the case as we can benefit from the introduction of more zombie
patterns.

As we know that no results for team D are possible, we can also
introduce the zombie patterns (k, D, %, *,%) and (x,*,x*, D, ).
Now suppose we are computing a join with a table Best_teams,
which contains the values A, C and D, and which is complete (“x”).

If we also computed the zombie patterns for D, we can promote
the patterns for A, C and D together to the pattern (*,*,*,*,*,*) for
the result. If we did not introduce the pattern for D, we could just
compute patterns for A and C in the join result.

We conclude from this example that information about values
that cannot occur in results may be needed to ensure computational
completeness.

In this section we discuss how zombie patterns can help deduce
more general and thus stronger completeness patterns, how they
can be represented, and what is the experimental impact of gener-
ating them.

Zombie Patterns. Zombie patterns are explicit assertions of
completeness for values that can currently not appear in the result
of an expression, either due to algebra operations or due to the state
of the database instance.

Naively, that is, without further domain information, this ap-
proach may require one to assert one zombie pattern for every value
in the active domain of the database (set of all constants appearing
in the database). Therefore, zombie pattern generation is only fea-
sible for attributes with known domain (e.g. month or state).

E.1 Adding Zombie Patterns

Zombie patterns naturally arise in two operations: Selection by
constant and join. In the first case, the introduction is instance-
independent, in the second case not.

Consider first a selection by constant &4—q(P), where the at-
tribute A has the domain dom(A). Then, we add the zombie pat-
terns

{(c,*,...,%) | c € dom(A),c# d},

to the result of the selection, where we assumed without loss of
generality that A is the first attribute of P.

For a join, the added patterns depend on the database instance.
Consider the join F1xia=p F> of expression F; and Es whose
complete parts are described by the pattern sets P; and P,. We
define the zombie patterns similarly to the promotion result us-
ing a function addZombies, which, too, is called twice with in-
terchanged arguments.

addZombies(En, P1, A, P2, B, D)
result := 0;
for each p in P with p[A] ==
for each d in dom(A)\ ma(E1(D))
result := result U{p[A/d] - (*,...,%)};
return result;

Intuitively, given a completeness pattern with * for the join at-
tribute on one side of the join, we insert all values that are not cov-
ered by this pattern into the join position, and extend the pattern
with (x,...) on the other side, because no such rows can occur at
all due to the completeness pattern.

How many patterns get created depends on the size of the do-
mains and on the database instance. In the next section, we report
insights from our use case.

Whether the zombie algebra is computationally complete is an
open question to date, because it is not clear whether the extensions

Join Number of | Zombie Zombie Size of
attribute distinct statements | statements | minimized

attribute before mi- after mi- output

values nimization nimization
vendor 7 6,833 380 515
region 6 5,841 577 751
technology 3 2,843 516 801
TE“"—I.““"" 6 7,001 101 202

ity

sector 13 12,835 510 806
state 53 53,870 733 929

Table 10: Number of zombie patterns in a join of a fact table
with 1000 patterns with a complete dimension table, before and
after minimization.

discussed above introduce all possible kinds of zombie patterns that
could be needed in the algebra.

E.2 Impact of Zombie Patterns

The introduction of zombie patterns gives rise to two questions:
The first is how big is the overhead when computing zombie pat-
terns. The second is how often further promotion is possible when
computing zombie patterns. We look into both questions next.

Overhead due to Zombie Patterns. The number of zombie
patterns generated by selection operations is always the number of
possible values of that attribute minus one. In a join, the number of
zombie patterns can be varying. We therefore tested both a selfjoin
and a join with a complete dimension table, both set up as discussed
in Section[5.2]

Table [T0| contains rows reporting the number of zombie patterns
generated in a join of a fact table with 1000 patterns with a com-
plete dimension table, measured before and after removing sub-
sumed patterns from the result. Before minimization there is a clear
correlation with the number of attribute values. After minimization,
the number of zombie patterns is more uniform around 66%.

In a selfjoin experiment with 100 completeness patterns and 500
random tuples in the database (note that the less data, the more
zombie patterns are created), one third of the resulting complete-
ness patterns were zombie patterns.

As minimization of sets of completeness patterns takes a consid-
erable share of the runtime of completeness calculation, the addi-
tion of zombie statements also increases the runtime. Both in the
selfjoin and in the join with a complete dimension table, the intro-
duction of zombies led to an average runtime increase by 250%.

Additional Inferences Due to Zombie Patterns. Zombie
patterns in intermediate join results may be required for promo-
tion in subsequent joins. We therefore computed a three-way-join,
where once we computed zombie patterns in the intermediate re-
sult and once not. It turned out that out of 200 runs with random
sets of 70 completeness patterns for each of the three tables, only in
2 runs there were additional patterns in the result when computing
zombie patterns in the intermediate result. In these two runs, once
4% (10 patterns) and once 7% (1 pattern) were additionally com-
puted. Over all runs, this amounts to 0.08% additionally computed
patterns. Note that, even though this numbers suggest that zom-
bie patterns have little impact, completeness patterns can have very
different generality and a few more computed patterns can still be
important in some applications.
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