
1

Distributed Systems

9. Coordination and Agreement

Werner Nutt

2

Co-ordination Algorithms

are fundamental in distributed systems:
to dynamically re-assign the role of master
– choose primary server after crash
– co-ordinate resource access

for resource sharing: concurrent updates of
– entries in a database (data locking)
– files
– a shared bulletin board

to agree on actions: whether to
– commit/abort database transaction
– agree on a readings from a group of sensors

3

Why is it Difficult?

Centralised solutions not appropriate
– communications bottleneck, single point of failure

Fixed master-slave arrangements not appropriate
– process crashes

Varying network topologies
– ring, tree, arbitrary; connectivity problems

Failures must be tolerated if possible
– link failures
– process crashes

Impossibility results
– in presence of failures, esp. asynchronous model
– impossibility of “coordinated attack”

4

Synchronous vs. Asynchronous Interaction

Synchronous distributed system
– Time to execute a step has lower and upper bounds
– Each message is received within a given time
– Each process has a local clock with a bounded drift

Asynchronous distributed system
– No bounds on process execution time
– No bounds on message reception time
– Arbitrary clock drifts

failure detection by timeout

the common case

5

Co-ordination Problems

Leader election
– after crash failure has occurred
– after network reconfiguration

Mutual exclusion
– distributed form of synchronized access problem
– must use message passing

Consensus (also called Agreement)
– similar to coordinated attack
– some based on multicast communication
– variants depending on type of failure, network, etc

6

Failure Assumptions

Assume reliable links, but possible process crashes
Failure detection service:
– provides query answer if a process has failed
– how?

• processes send ‘I am here’ messages every T secs
• failure detector records replies

– unreliable, especially in asynchronous systems
Observations of failures:
– Suspected: no recent communication, but could be slow
– Unsuspected: but no guarantee it has not failed since
– Failed: crash has been determined

7

Analysing (Distributed) Algorithms

Qualitative properties
– Safety: if there is an outcome,

then it satisfies the specification of the algorithm
– Liveness: there is an outcome

Quantitative properties
– Bandwidth: total number of messages sent around
– Turnaround: number of steps needed to come to a result

8

Coordination and Agreement

9.1 Leader Election

1. Leader Election
2. Mutual Exclusion
3. Agreement

9

Leader Election
The problem:
– N processes, may or may not have unique IDs (UIDs)
– must choose unique master co-ordinator amongst

themselves
– one or more processes can call election simultaneously
– sometimes, election is called after failure has occurred

Safety:
– Every process has a variable elected, which contains

the UID of the leader or is yet undefined

Liveness (and safety):
– All processes participate and eventually discover the

identity of the leader (elected cannot be undefined).

10

Election on a Ring (Chang/Roberts 1979)

Assumptions:
– each process has a UID, UIDs are linearly ordered
– processes form a unidirectional logical ring, i.e.,

• each process has channels to two other processes
• from one it receives messages, to the other it sends messages

Goal:
– process with highest UID becomes leader

Note:
– UIDs can be created dynamically, e.g.,

process i has the pair < 1/loadi , pidi >

11

Election on a Ring (cntd)

Processes
send two kinds of messages: elect(UID), elected(UID)
can be in two states: non-participant, participant

Two phases
Determine leader
Announce winner

Initially, each process is non-participant

12

Algorithm: Determine Leader

Some process with UID id0 initiates the election by
– becoming participant
– sending the message elect(id0) to its neighbour

When a non-participant receives a message elect(id)
– it forwards elect(idmax), where idmax is the maximum of

its own and the received UID
– becomes participant

When a participant receives a message elect(id)
– it forwards the message if id is greater than its own UID
– it ignores the message if id is less than its own UID

13

Algorithm: Announce Winner
When a participant receives a message elect(id)
where id is its own UID
– it becomes the leader
– it becomes non-participant
– sends the message elected(id) to its neighbour

When a participant receives a message elected(id)
– it records id as the leader’s UID
– Becomes non-participant
– forwards the message elected(id) to its neighbour

When a non-participant receives a message elected(id)
– …

14

Election on a Ring: Example

24

15

9

4

3

28

17

24

1

participants

non-participants

15

Properties
Safety:

Liveness
– clear, if only one election is running
– what, if several elections are running at the same time?

participants do not forward smaller IDs

Bandwidth: at most 3n – 1 (if a single process starts
the election, what if several
processes start an election?)

Turnaround: at most 3n - 1

16

Under Which Conditions can it Work?

What if the algorithm is run in an asynchronous system?
– Synchronicity is not needed for the algorithm

(but may be needed for detecting failure of the old leader)

What if there is a failure (process or connection)?
– the election gets stuck

assumption: no failures
(in token rings, nodes are connected to the network by a
connector, which may pass on tokens, even if the node has failed)

When is this applicable?
– token ring/token bus
– when leader role is needed for a specific task
– when IDs change, e.g., IDs linked to current load

17

Bully Algorithm (Garcia-Molina)

Idea: Process with highest ID imposes itself as the leader

Assumption:
– each process has a unique ID
– each process knows the IDs of the other processes

When is it applicable?
– IDs don't change
– processes may fail

Further assumption: synchronous system
– to detect failure
– to detect that there is no answer to a request

18

Bully Algorithm: Principles

A process detects failure of the leader How?

The process starts an election by notifying the potential
candidates (i.e., processes with greater ID)
– if no candidate replies (synchronicity!),

the process declares itself the winner of the election
– if there is a reply,

the process stops its election initiative

When a process receives a notification
– it replies to the sender
– and starts an election

19

Bully Algorithm: Messages

Election message:
– to “call elections” (sent to nodes with higher UID)

Answer message:
– to “vote” (… against the caller, sent to nodes with lower UID)

Coordinator message:
– to announce own acting as coordinator

20

Bully Algorithm: Actions

The process with highest UID sends coordinator message

A process starting an election sends an election message
– if no answer within time T = 2 Ttransmission + Tprocess,

then it sends a coordinator message

If a process receives a coordinator message
– it sets its coordinator variable

If a process receives an election message
– it answers and begins another election (if needed)

If a new process starts to coordinate (highest UID),
– it sends a coordinator message and “bullies” the

current coordinator out

21

Bully Algorithm: Example

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

p
1

p
2

p
3

p
4

p3 fails
Stage 3

p1 p
2

p
3

p
4

C

election

election
Stage 2

election

answer

C
coordinator

Stage 4

Eventually.....

p
1

p
2

p
3

p
4

Processor p2 is elected
coordinator,
after the failure of p4
and then p3

22

Properties of the Bully Algorithm

Liveness
– guaranteed because of synchronicity assumption

Safety
– clear if group of processes is stable

(no new processes)
– not guaranteed if new process declares itself as the

leader during election (e.g., old leader is restarted)

• two processes may declare themselves as leaders
at the same time

• but no guarantee can be given on the
order of delivery of those messages

23

Quantitative Properties

Best case: process with 2nd highest ID detects failure
Worst case: process with lowest ID detects failure

Bandwidth:
– N -1 messages in best case
– O(N2) in worst case

Turnaround:
– 1 message in best case
– 4 messages in worst case

24

Randomised Election (Itai/Rodeh)

Assumptions
– N processes, unidirectional ring, synchronous (?)
– processes do not have UIDs

Election
– each process selects ID at random from set {1,…,K}

• non-unique! but fast
– processes pass all IDs around the ring
– after one round, if there exists a unique ID then elect

maximum unique ID
– otherwise, repeat

Question
– how does the loop terminate?

Probabilistically!

25

Randomised Election (cntd)
How do we know the algorithm terminates?
– from probabilities: if we keep flipping a fair coin then

after several heads you must get tails
How many rounds does it take?
– the larger the probability of a unique ID, the faster the

algorithm
– expected time: N=4, K=16, expected 1.01 rounds

Why use randomisation?
– symmetry breaker
– no deterministic solution for the problem

Only probabilistic guarantee of termination
(with probability 1)

26

Coordination and Agreement

9.2 Mutual Exclusion

1. Leader Election
2. Mutual Exclusion
3. Agreement

27

Distributed Mutual Exclusion
The problem
– N asynchronous processes, for simplicity no failures
– guaranteed message delivery (reliable links)
– to execute critical section (CS), each process calls:

• enter()
• resourceAccess()
• exit()

Requirements
– Safety: At most one process is in CS at the same time
– Liveness: Requests to enter and exit are eventually granted
– Ordering: Requests to enter are served by a FIFO policy according

to Lamport’s causality order

28

Asynchronous Email

How can A know the order in which the messages were sent?

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

29

Time in Banking Scenario

A bank keeps replicas of bank accounts in Milan and Rome

Event 1:
Customer Rossi pays 100 € into his account of 1000 €

Event 2:
The bank adds 5% interest

Info is broadcast to Milan and Rome

Make sure that replicas are updated in the same order!
Give agreed upon time stamps to transactions!

30

Time Ordering of Events (Lamport)

Observation:
For some events E1, E2,
it is “obvious” that E1happened before E2

(written E1 → E2)

If E1 happens before E2 in process P, then E1 → E2

If E1 = send(M) and E2 = receive(M), then E1 → E2
(M is a message)

If E1 → E2 and E2 → E3 then E1 → E3

31

Logical Clocks

Goal: Assign “timestamps” ti to events Ei such that

E1 → E2 ⇒ t1 < t2
not the converse!

Approach: Processes
incrementally number their events
send numbers with messages
update their “logical clock” to

max(OwnTime, ReceivedTime) +1
when they receive a message

32

Logical Clocks in the Email Scenario

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

2 4
5

Messages carry numbers 5 1 3

For a tie break, use process numbers as second component!

33

Centralised Service

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

34

Centralised Service

Single server implements imaginary token:
– only process holding the token can be in CS
– server receives request for token
– replies granting access if CS free;

otherwise, request queued
– when a process releases the token,

oldest request from queue granted
It works though...
– does not respect causality order of requests – why?

but
– server is performance bottleneck!
– what if server crashes?

35

Properties

Safety: “No two processes are in the critical section
at the same time” …

Liveness: …
Ordering: ???

Bandwidth: 2 messages for request + 1 for release
Client Delay: O(length of queue)
Synchronisation Delay (= time between exit of current and
enter of next process) : 2

36

Centralised Service: Discussion

Server is a single point of failure
– How can one cope with server failure?
– Which difficulties arise?

How can a process distinguish between
– “permission denied”
– dead server?

What about the following attempt to grant access
with respect to Lamport‘s causality order:

“Order requests in queue wrt Lamport timestamps”

37

Ring-based Algorithm

pn

p
2

p
3

p
4

Token

p
1

Arrange processes in a logical ring, let them pass token

38

Ring-based Algorithm

No master, no server bottleneck
Processes:
– continually pass token around the ring, in one direction
– if do not require access to CS, pass on to neighbour
– otherwise, wait for token and retain it while in CS
– to exit, pass to neighbour

How it works
– continuous use of network bandwidth
– delay to enter depends on the size of ring
– causality order of requests not respected

Why?

39

Properties

Safety (“No two processes …”): …
Liveness: …
Ordering: ???

Bandwidth: continuous usage
Client Delay: between 0 and N
Synchronisation Delay: between 1 and N

40

Ring-based Algorithm: Discussion

How many points of failure?

Suppose the ring is a logical ring:
How could one cope with failure of a node?

How could one detect failure of a node?

41

Multicast Mutual Exclusion
(Ricart/Agrawala)

Based on multicast communication
– N inter-connected asynchronous processes, each with

• unique id
• Lamport’s logical clock

– processes multicast request to enter:
• timestamped with Lamport’s clock and process id

– entry granted
• when all other processes replied
• simultaneous requests resolved with the timestamp

How it works
– satisfies the ordering property
– if support for multicast, only one message to enter

42

Multicast Mutual Exclusion
On initialization

state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

43

Multicast Mutual Exclusion: Example

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

p1, p2 request access
simultaneously,
p3 does not want access;
p2 does not reply to p1 since
it has a lower timestamp

44

Properties

Safety: Indirect proof:
pi and pj both in the critical section

⇒ pi and pj replied to each other
⇒ (Ti, pi) < (Tj, pj) and (Tj, pj) < (Ti, pi)

Liveness: …
Ordering: if pi makes its request “before” pj,

then Ti,pi < Tj,pj …

Bandwidth: 2 (N – 1) messages or 1 multicast + (N-1) replies
Client Delay: 2
Synchronisation Delay: 1

45

Multicast Mutual Exclusion: Discussion

Is there a single point of failure?

Comparison between multicast and centralised approach:
– number of messages for granting a request
– sensitivity to crashes

Which approach would you expect to be used in practice?

46

Mutual Exclusion by Voting (Maekawa)

Observation:
– it is not necessary to have replies of all peers
– one can use a voting mechanism

Formalisation: With each process pi, we associate a
voting set Vi ⊆ {p1, p2, …, pN} such that

– pi ∈ Vi

– Vi ∩ Vj ≠ ∅ there is at least one common member
for any two voting sets

47

Maekawa’s Algorithm
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
Multicast request to all processes in Vi ;
Wait until (number of replies received = |Vi |);
state := HELD;

On receipt of a request from pi at pj
if (state = HELD or voted = TRUE)
then
queue request from pi without replying;
else
send reply to pi;
voted := TRUE;
end if Continues on next slide

48

Maekawa’s Algorithm (cntd)
For pi to exit the critical section

state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj
if (queue of requests is non-empty)
then

remove head of queue – message from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

49

Qualitative Properties

Safety: “No two processes are in the critical section
at the same time”

– Indirect proof:
pi and pj both in the critical section ⇒ Vi ∩ Vj ≠ ∅

Liveness: Deadlocks can occur, e.g., consider
– V1 = {p1, p2} , V2 = {p2, p3} , V3 = {p3, p1}
– Suppose, p1, p2, p3 concurrently send out requests
– …

How could a deadlock be resolved?

And why is “pi ∈Vi” needed? Or is it?

50

Resolution of Deadlocks
Process queues pending requests in
“happened before” order

Deadlock resolution:
If node discovers that it has agreed to a “wrong” request
(i.e., to a later request while an earlier request arrives
only now),
– it checks whether the requesting node is waiting

or is in the critical section
– revokes agreement to waiting nodes

Why does it work?
– Order is the same everywhere!

51

Quantitative Properties

Assume:
– all sets have the same size, say K
– there are M sets

Bandwidth: 3K
Client Delay: 2
Synchronisation Delay: 2

Questions:
– How to choose K, i.e., the size of the voting sets?
– Which value for M, i.e, how many different sets are best?
– How can one choose the voting sets?

52

Maekawa’s Algorithm: Optimised !?
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = |Vi | – 1);
state := HELD;

On receipt of a request from pi at pj
if (state = HELD or voted = TRUE)
then
queue request from pi without replying;
else
send reply to pi;
voted := TRUE;
end if

Continues on next slide

53

Maekawa’s Algorithm: Optimised !?
For pi to exit the critical section

state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – message from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

54

Coordination and Agreement

9.3 Agreement

1. Leader Election
2. Mutual Exclusion
3. Agreement

55

Consensus Algorithms

Used when it is necessary to agree on actions:
– in transaction processing

commit or abort a transaction?

– mutual exclusion
which process is allowed to access the resource?

– in control systems
proceed or abort based on sensor readings?

The Consensus Problem is equivalent to other problems
– e.g. reliable and totally ordered multicast

56

Model and Assumptions

The model
– N processes
– communication by message passing
– synchronous or asynchronous
– communication reliable

Failures!
– Processes may crash
– arbitrary (Byzantine) failures

• processes can be treacherous and lie

Algorithms
– work in the presence of certain failures

57

Consensus: Main Idea
Initially
– processes begin in state “undecided”
– propose an initial value from a set D

Then
– processes communicate, exchanging values
– attempt to decide
– cannot change the decision value in decided state

The difficulty
– must reach decision even if crash has occurred
– or arbitrary failure!

58

Three Processes Reach a Consensus

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

59

Consensus: Requirements

Termination
– Eventually each correct process sets

its decision variable.

Agreement
– Any two correct processes must have set their variable

to the same decision value
⇒ processes must have reached “decided” state

Integrity
– If all correct processes propose the same value,

then any correct process that has decided
must have chosen that value.

60

Ideas towards a Solution

For simplicity, we assume no failures
– processes multicast their proposed values to others
– wait until they have collected all N values (including the own)
– choose most frequent value among v1,…,vn (or special value ⊥)

• can also use minimum/maximum

It works since ...
– if multicast is reliable (Termination)
– all processes end up with the same set of values
– majority vote ensures Agreement and Integrity

But what about failures?
– process crash - stops sending values after a while
– arbitrary failure - different values to different processes

61

Consensus in Synchronous Systems

Uses basic multicast (= messages are sent individually)
– guaranteed delivery by correct processes

as long as the sender does not crash

Admits process crash failures (but not byzantine failures)
– assume up to f of the N processes may crash

How it works ...
– f +1 rounds
– relies on synchronicity (timeout!)

62

Consensus in Synchronous Systems

Initially
– each process proposes a value from a set D

Each process
– maintains the set of values Vr known to it at round r

In each round r, where 1 ≤ r ≤ f+1, each process
– multicasts the new values to the other ones

(only values not sent before, that is, Vr-1 – Vr-2)
– receives multicast messages, records new values in Vr

In round f+1
– each process chooses min(Vf+1) as decision value

63

The Algorithm (Dolev and Strong)

Algorithm for process pi, proceeds in f+1 rounds

On initialization
Vi

0 = {vi}; Vi
−1 = {}

In round r (1 ≤ r ≤ f+1)
multicast(Vi

r−1 − Vi
r−2) // send only values that have not been sent

Vi
r = Vi

r−1

while (in round r)
{
if (pj delivers Vj)

Vi
r = Vi

r ∪ Vj
}

After f+1 rounds
pj = min(Vi

f+1)

64

Consensus in Synchronous Systems

Why does it work?
– set timeout to maximum time for correct process

to multicast message
– one can conclude that process crashed if no reply
– if process crashes, some value is not forwarded ...

At round f+1
– assume p1 has a value v that p2 does not have
– then some p3 managed to send v to p1, but no more to p2

⇒ any process sending v in round f must have crashed
(otherwise, both p3 and p2 would have received v)

– in this way, in each round one process has crashed
– there were f+1 rounds, but only f crashes could occur

65

Byzantine generals

The problem [Lamport 1982]
– three or more generals are to agree to attack or retreat
– one (commander) issues the order
– the others (lieutenants) decide
– one or more generals are treacherous (= faulty!)

• propose attacking to one general, and retreating to another
• either commander or lieutenants can be treacherous!

Requirements
– Termination, Agreement as before.
– Integrity: If the commander is correct then all correct

processes decide on the value proposed by
commander.

66

Byzantine Generals …
Processes exhibit arbitrary failures
– up to f of the N processes faulty

In a synchronous system
– can use timeout to detect absence of a message
– cannot conclude process crashed if no reply
– impossibility with N ≤ 3f

In an asynchronous system
– cannot use timeout to reliably detect absence of a

message
– impossibility with even one crash failure!!!
– hence impossibility of reliable totally ordered

multicast...

67

Impossibility with 3 Generals

Assume synchronous system
– 3 processes, one faulty
– if no message received, assume ⊥
– proceed in rounds
– messages ‘3:1:u’ meaning ‘3 says 1 says u’

Problem! ‘1 says v’ and ‘3 says 1 says u’
– cannot tell which process is telling the truth!
– goes away if digital signatures used...

Show
– no solution to agreement for N=3 and f=1

Can generalise to impossibility for N ≤ 3f

68

Impossibility with 3 Generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown in red

Commander faulty
p2 cannot tell which value sent

by commander

p3 sends illegal value p2
p2 cannot tell which value sent

by commander

69

Impossibility with 3 Generals

So, if the solution exists
– p2 decides on value sent by commander (v) when the

commander is correct
– and also when commander faulty (w), since

it cannot distinguish between the two scenarios
Apply the same reasoning to p3

– conclude p3 must decide on x when commander faulty
Thus
– contradiction to Agreement!

since p2 decides on w, p3 on x if commander faulty
– no solution exists

70

But …

A solution exists for 4 processes with one faulty
– commander sends value to each of the lieutenants
– each lieutenant sends value it received to its peers
– if commander faulty, then correct lieutenants have

gathered all values sent by the commander
– if one lieutenant faulty, then each correct lieutenant

receives 2 copies of the value from the commander
Thus
– correct lieutenants can decide on majority of the values

received
Can generalise to N ≥ 3f + 1

71

Four Byzantine Generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown redp4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 decides majority(v,u,v) = v
p4 decides majority(v,v,w) = v

p2, p3 and p4 decide ⊥
(no majority exists)

72

In Asynchronous Systems …

No guaranteed solution exists even for one failure!!!
[Fisher, Lynch, Paterson ‘85]

– does not exclude the possibility of consensus in the
presence of failures

– consensus can be reached with positive probability
How can this be true?
– The Internet is asynchronous, exhibits arbitrary failures

and uses consensus?
Practical solutions exist using
– failure masking (processes restart after crash)
– treatment of slow processes as “dead”

(partially synchronous systems)
– randomisation

73

Summary

Consensus algorithms
– are fundamental to achieve co-ordination
– deal with crash or arbitrary (=Byzantine) failures
– are subject t several impossibility results

Solutions exist for synchronous systems
– if at most f crash failures, in f+1 rounds
– if no more than f processes of N are faulty, N ≥ 3f + 1

Solutions for asynchronous systems
– no guaranteed solution even for one failure!
– practical solutions exist

74

References
In preparing the lectures I have used several sources.
The main ones are the following:

Books:
Coulouris, Dollimore, Kindberg. Distributed Systems –
Concepts and Design (CDK)

Slides:
Marco Aiello, course on Distributed Systems at the Free
University of Bozen-Bolzano
CDK Website
Marta Kwiatkowska, U Birmingham, slides of course on
DS

