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Co-ordination Algorithms

are fundamental in distributed systems:
to dynamically re-assign the role of master
– choose primary server after crash
– co-ordinate resource access

for resource sharing: concurrent updates of
– entries in a database (data locking)
– files
– a shared bulletin board

to agree on actions: whether to
– commit/abort database transaction
– agree on a readings from a group of sensors
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Why is it Difficult?

Centralised solutions not appropriate
– communications bottleneck, single point of failure

Fixed master-slave arrangements not appropriate
– process crashes

Varying network topologies
– ring, tree, arbitrary; connectivity problems

Failures must be tolerated if possible
– link failures
– process crashes

Impossibility results
– in presence of failures, esp. asynchronous model
– impossibility of “coordinated attack”



4

Synchronous vs. Asynchronous Interaction

Synchronous distributed system
– Time to execute a step has lower and upper bounds
– Each message is received within a given time
– Each process has a local clock with a bounded drift 

Asynchronous distributed system
– No bounds on process execution time
– No bounds on message reception time
– Arbitrary clock drifts

failure detection by timeout

the common case
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Co-ordination Problems

Leader election
– after crash failure has occurred
– after network reconfiguration

Mutual exclusion
– distributed form of synchronized access problem
– must use message passing

Consensus (also called Agreement)
– similar to coordinated attack
– some based on multicast communication
– variants depending on type of failure, network, etc
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Failure Assumptions

Assume reliable links, but possible process crashes
Failure detection service:
– provides query answer if a process has failed
– how?

• processes send ‘I am here’ messages every T secs
• failure detector records replies

– unreliable, especially in asynchronous systems
Observations of failures:
– Suspected: no recent communication, but could be slow
– Unsuspected: but no guarantee it has not failed since
– Failed: crash has been determined
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Analysing (Distributed) Algorithms

Qualitative properties
– Safety: if there is an outcome, 

then it satisfies the specification of the algorithm
– Liveness: there is an outcome

Quantitative properties
– Bandwidth: total number of messages sent around
– Turnaround: number of steps needed to come to a result
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Coordination and Agreement

9.1 Leader Election

1. Leader Election
2. Mutual Exclusion
3. Agreement
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Leader Election
The problem:
– N processes, may or may not have unique IDs (UIDs)
– must choose unique master co-ordinator amongst 

themselves
– one or more processes can call election simultaneously
– sometimes, election is called after failure has occurred

Safety: 
– Every process has a variable elected, which contains 

the UID of the leader or is yet undefined

Liveness (and safety): 
– All processes participate and eventually discover the 

identity of the leader (elected cannot be undefined).
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Election on a Ring (Chang/Roberts 1979)

Assumptions:
– each process has a UID, UIDs are linearly ordered
– processes form a unidirectional logical ring, i.e., 

• each process has channels to two other processes
• from one it receives messages, to the other it sends messages 

Goal:
– process with highest UID becomes leader

Note:
– UIDs can be created dynamically, e.g., 

process i has the pair < 1/loadi , pidi >
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Election on a Ring (cntd)

Processes
send two kinds of messages: elect(UID), elected(UID)
can be in two states: non-participant, participant

Two phases
Determine leader
Announce winner

Initially, each process is non-participant
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Algorithm: Determine Leader

Some process with UID id0 initiates the election by
– becoming participant
– sending the message elect(id0) to its neighbour

When a non-participant receives a message elect(id)
– it forwards elect(idmax), where idmax is the maximum of 

its own and the received UID
– becomes participant

When a participant receives a message elect(id)
– it forwards the message if id is greater than its own UID
– it ignores the message if id is less than its own UID



13

Algorithm: Announce Winner
When a participant receives a message elect(id) 
where id is its own UID
– it becomes the leader
– it becomes non-participant
– sends the message elected(id) to its neighbour

When a participant receives a message elected(id)
– it records id as the leader’s UID
– Becomes non-participant
– forwards the message elected(id) to its neighbour

When a non-participant receives a message elected(id)
– …
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Election on a Ring: Example
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Properties
Safety:

Liveness
– clear, if only one election is running
– what, if several elections are running at the same time?

participants do not forward smaller IDs

Bandwidth: at most 3n – 1 (if a single process starts
the election, what if several
processes start an election?)

Turnaround: at most 3n - 1 
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Under Which Conditions can it Work?

What if the algorithm is run in an asynchronous system? 
– Synchronicity is not needed for the algorithm

(but may be needed for detecting failure of the old leader)

What if there is a failure (process or connection)? 
– the election gets stuck

assumption: no failures
(in token rings, nodes are connected to the network by a 
connector, which may pass on tokens, even if the node has failed)

When is this applicable?  
– token ring/token bus
– when leader role is needed for a specific task
– when IDs change, e.g., IDs linked to current load
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Bully Algorithm (Garcia-Molina)

Idea: Process with highest ID imposes itself as the leader

Assumption: 
– each process has a unique ID
– each process knows the IDs of the other processes

When is it applicable?
– IDs don't change
– processes may fail

Further assumption: synchronous system
– to detect failure
– to detect that there is no answer to a request 
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Bully Algorithm: Principles

A process detects failure of the leader How?

The process starts an election by notifying the potential 
candidates (i.e., processes with greater ID)
– if no candidate replies (synchronicity!), 

the process declares itself the winner of the election 
– if there is a reply, 

the process stops its election initiative

When a process receives a notification
– it replies to the sender
– and starts an election
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Bully Algorithm: Messages

Election message: 
– to “call elections” (sent to nodes with higher UID)

Answer message: 
– to “vote” (… against the caller, sent to nodes with lower UID)

Coordinator message: 
– to announce own acting as coordinator
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Bully Algorithm: Actions

The process with highest UID sends coordinator message

A process starting an election sends an election message
– if no answer within time T = 2 Ttransmission + Tprocess, 

then it sends a coordinator message

If a process  receives a coordinator message
– it sets its coordinator variable

If a process receives an election message
– it answers and begins another election (if needed)

If a new process starts to coordinate (highest UID), 
– it sends a coordinator message and “bullies” the 

current coordinator out
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Bully Algorithm: Example
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Properties of the Bully Algorithm

Liveness
– guaranteed because of synchronicity assumption

Safety
– clear if group of processes is stable 

(no new processes)
– not guaranteed if new process declares itself as the 

leader during election (e.g., old leader is restarted)

• two processes may declare themselves as leaders 
at the same time

• but no guarantee can be given on the 
order of delivery of those messages
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Quantitative Properties

Best case: process with 2nd highest ID detects failure 
Worst case: process with lowest ID detects failure 

Bandwidth: 
– N -1 messages in best case
– O(N2) in worst case

Turnaround: 
– 1 message in best case
– 4 messages in worst case
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Randomised Election (Itai/Rodeh)

Assumptions
– N processes, unidirectional ring, synchronous (?)
– processes do not have UIDs

Election
– each process selects ID at random from set {1,…,K}

• non-unique! but fast
– processes pass all IDs around the ring
– after one round, if there exists a unique ID then elect 

maximum unique ID
– otherwise, repeat

Question
– how does the loop terminate?

Probabilistically!
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Randomised Election (cntd)
How do we know the algorithm terminates?
– from probabilities: if we keep flipping a fair coin then 

after several heads you must get tails
How many rounds does it take?
– the larger the probability of a unique ID, the faster the 

algorithm
– expected time: N=4, K=16, expected 1.01 rounds

Why use randomisation?
– symmetry breaker
– no deterministic solution for the problem

Only probabilistic guarantee of termination 
(with probability 1) 
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Coordination and Agreement

9.2 Mutual Exclusion

1. Leader Election
2. Mutual Exclusion
3. Agreement
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Distributed Mutual Exclusion
The problem
– N asynchronous processes, for simplicity no failures
– guaranteed message delivery (reliable links)
– to execute critical section (CS), each process calls:

• enter()
• resourceAccess()
• exit()

Requirements
– Safety: At most one process is in CS at the same time
– Liveness: Requests to enter and exit are eventually granted
– Ordering: Requests to enter are served by a FIFO policy according 

to Lamport’s causality order
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Asynchronous Email
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Time in Banking Scenario

A bank keeps replicas of bank accounts in Milan and Rome

Event 1:
Customer Rossi pays 100 € into his account of 1000 €

Event 2:
The bank adds 5% interest 

Info is broadcast to Milan and Rome

Make sure that replicas are updated in the same order! 
Give agreed upon time stamps to transactions!
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Time Ordering of Events (Lamport)

Observation: 
For some events E1, E2, 
it is “obvious” that E1happened before E2 

(written E1 → E2)

If E1 happens before E2 in process P, then E1 → E2

If E1 = send(M) and E2 = receive(M), then E1 → E2
(M is a message)

If E1 → E2 and E2 → E3 then E1 → E3
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Logical Clocks

Goal: Assign “timestamps” ti to events Ei such that

E1 → E2 ⇒ t1 < t2       
not the converse!

Approach: Processes
incrementally number their events
send numbers with messages
update their “logical clock” to 

max(OwnTime, ReceivedTime) +1
when they receive a message
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Logical Clocks in the Email Scenario
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Centralised Service
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Centralised Service

Single server implements imaginary token:
– only process holding the token can be in CS
– server receives request for token
– replies granting access if CS free; 

otherwise, request queued
– when a process releases the token, 

oldest request from queue granted
It works though...
– does not respect causality order of requests – why?

but
– server is performance bottleneck!
– what if server crashes?
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Properties

Safety: “No two processes are in the critical section
at the same time” …

Liveness: …
Ordering: ???

Bandwidth: 2 messages for request + 1 for release
Client Delay: O(length of queue) 
Synchronisation Delay (= time between exit of current and 
enter of next process) : 2
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Centralised Service: Discussion

Server is a single point of failure
– How can one cope with server failure?
– Which difficulties arise?

How can a process distinguish between
– “permission denied”
– dead server?

What about the following attempt to grant access
with respect to Lamport‘s causality order:

“Order requests in queue wrt Lamport timestamps”
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Ring-based Algorithm
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Ring-based Algorithm

No master, no server bottleneck
Processes:
– continually pass token around the ring, in one direction
– if do not require access to CS, pass on to neighbour
– otherwise, wait for token and retain it while in CS
– to exit, pass to neighbour

How it works
– continuous use of network bandwidth
– delay to enter depends on the size of ring
– causality order of requests not respected 

Why?
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Properties

Safety (“No two processes …”): …
Liveness: …
Ordering: ???

Bandwidth: continuous usage
Client Delay: between 0 and N
Synchronisation Delay: between 1 and N
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Ring-based Algorithm: Discussion

How many points of failure?

Suppose the ring is a logical ring:
How could one cope with failure of a node?

How could one detect failure of a node?



41

Multicast Mutual Exclusion
(Ricart/Agrawala)

Based on multicast communication
– N inter-connected asynchronous processes, each with

• unique id
• Lamport’s logical clock

– processes multicast request to enter:
• timestamped with Lamport’s clock and process id

– entry granted
• when all other processes replied
• simultaneous requests resolved with the timestamp

How it works
– satisfies the ordering property
– if support for multicast, only one message to enter
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Multicast Mutual Exclusion 
On initialization

state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;
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Multicast Mutual Exclusion: Example
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Properties

Safety: Indirect proof: 
pi and pj both in the critical section 

⇒ pi and pj replied to each other
⇒ (Ti, pi) < (Tj, pj) and (Tj, pj) < (Ti, pi) 

Liveness: …
Ordering: if pi makes its request “before” pj, 

then Ti,pi < Tj,pj …

Bandwidth: 2 (N – 1) messages or 1 multicast + (N-1) replies
Client Delay: 2   
Synchronisation Delay: 1   
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Multicast Mutual Exclusion: Discussion

Is there a single point of failure?

Comparison between multicast and centralised approach:
– number of  messages for granting a request
– sensitivity to crashes

Which approach would you expect to be used in practice?
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Mutual Exclusion by Voting (Maekawa)

Observation:
– it is not necessary to have replies of all peers
– one can use a voting mechanism

Formalisation: With each process pi, we associate a 
voting set Vi ⊆ {p1, p2, …, pN} such that

– pi ∈ Vi

– Vi ∩ Vj ≠ ∅ there is at least one common member
for any two voting sets
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Maekawa’s Algorithm
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
Multicast request to all processes in Vi ;
Wait until (number of replies received = |Vi |);
state := HELD;

On receipt of a request from pi at pj
if (state = HELD or voted = TRUE)
then
queue request from pi without replying; 
else
send reply to pi;
voted := TRUE;
end if Continues on next slide
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Maekawa’s Algorithm (cntd)
For pi to exit the critical section

state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj
if (queue of requests is non-empty)
then

remove head of queue – message from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if
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Qualitative Properties

Safety: “No two processes are in the critical section
at the same time”

– Indirect proof: 
pi and pj both in the critical section ⇒ Vi ∩ Vj ≠ ∅

Liveness: Deadlocks can occur, e.g., consider
– V1 = {p1, p2} , V2 = {p2, p3} , V3 = {p3, p1}
– Suppose, p1, p2, p3 concurrently send out requests
– …

How could a deadlock be resolved?

And why is “pi ∈Vi” needed? Or is it?
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Resolution of Deadlocks
Process queues pending requests in 
“happened before” order

Deadlock resolution:
If node discovers that it has agreed to a “wrong” request
(i.e., to a later request while an earlier request arrives 
only now),
– it checks whether the requesting node is waiting

or is in the critical section
– revokes agreement to waiting nodes

Why does it work?
– Order is the same everywhere!
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Quantitative Properties

Assume: 
– all sets have the same size, say K
– there are M sets

Bandwidth: 3K
Client Delay: 2
Synchronisation Delay: 2

Questions:
– How to choose K, i.e., the size of the voting sets?
– Which value for M, i.e, how many different sets are best?
– How can one choose the voting sets?
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Maekawa’s Algorithm: Optimised !?
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = |Vi | – 1);
state := HELD;

On receipt of a request from pi at pj
if (state = HELD or voted = TRUE)
then
queue request from pi without replying; 
else
send reply to pi;
voted := TRUE;
end if

Continues on next slide
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Maekawa’s Algorithm: Optimised !? 
For pi to exit the critical section

state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – message from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if
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Coordination and Agreement

9.3 Agreement

1. Leader Election
2. Mutual Exclusion
3. Agreement
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Consensus Algorithms

Used when it is necessary to agree on actions:
– in transaction processing

commit or abort a transaction?

– mutual exclusion
which process is allowed to access the resource?

– in control systems
proceed or abort based on sensor readings?

The Consensus Problem is equivalent to other problems
– e.g. reliable and totally ordered multicast
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Model and Assumptions

The model
– N processes
– communication by message passing
– synchronous or asynchronous
– communication reliable

Failures!
– Processes may crash
– arbitrary (Byzantine) failures

• processes can be treacherous and lie

Algorithms
– work in the presence of certain failures
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Consensus: Main Idea
Initially
– processes begin in state “undecided”
– propose an initial value from a set D

Then
– processes communicate, exchanging values
– attempt to decide
– cannot change the decision value in decided state

The difficulty
– must reach decision even if crash has occurred
– or arbitrary failure!
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Three Processes Reach a Consensus

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed
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Consensus: Requirements

Termination
– Eventually each correct process sets 

its decision variable.

Agreement
– Any two correct processes must have set their variable 

to the same decision value
⇒ processes must have reached “decided” state

Integrity
– If all correct processes propose the same value, 

then any correct process that has decided 
must have chosen that value.
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Ideas towards a Solution

For simplicity, we assume no failures
– processes multicast their proposed values to others
– wait until they have collected all N values (including the own)
– choose most frequent value among v1,…,vn (or special value ⊥) 

• can also use minimum/maximum

It works since ...
– if multicast is reliable (Termination)
– all processes end up with the same set of values 
– majority vote ensures Agreement and Integrity

But what about failures?
– process crash - stops sending values after a while
– arbitrary failure - different values to different processes
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Consensus in Synchronous Systems

Uses basic multicast (= messages are sent individually)
– guaranteed delivery by correct processes 

as long as the sender does not crash

Admits process crash failures (but not byzantine failures)
– assume up to f of the N processes may crash

How it works ...
– f +1 rounds
– relies on synchronicity (timeout!)
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Consensus in Synchronous Systems

Initially
– each process proposes a value from a set D

Each process
– maintains the set of values Vr known to it at round r

In each round r, where 1 ≤ r ≤ f+1, each process
– multicasts the new values to the other ones

(only values not sent before, that is, Vr-1 – Vr-2)
– receives multicast messages, records new values in Vr

In round f+1
– each process chooses min(Vf+1) as decision value
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The Algorithm (Dolev and Strong)

Algorithm for process pi, proceeds in f+1 rounds

On initialization
Vi

0 = {vi};   Vi
−1 = {}

In round r (1 ≤ r ≤ f+1)
multicast( Vi

r−1 − Vi
r−2 )  // send only values that have not been sent

Vi
r = Vi

r−1

while (in round r)
{
if (pj delivers Vj)

Vi
r = Vi

r ∪ Vj
}

After f+1 rounds
pj = min(Vi

f+1)
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Consensus in Synchronous Systems

Why does it work?
– set timeout to maximum time for correct process 

to multicast message
– one can conclude that process crashed if no reply
– if process crashes, some value is not forwarded ...

At round f+1
– assume p1 has a value v that p2 does not have
– then some p3 managed to send v to p1, but no more to p2

⇒ any process sending v in round f must have crashed
(otherwise, both p3 and p2 would have received v)

– in this way, in each round one process has crashed
– there were f+1 rounds, but only f crashes could occur
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Byzantine generals

The problem [Lamport 1982]
– three or more generals are to agree to attack or retreat 
– one (commander) issues the order 
– the others (lieutenants) decide 
– one or more generals are treacherous (= faulty!) 

• propose attacking to one general, and retreating to another 
• either commander or lieutenants can be treacherous! 

Requirements
– Termination, Agreement as before. 
– Integrity: If the commander is correct then all correct 

processes decide on the value proposed by 
commander.
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Byzantine Generals …
Processes exhibit arbitrary failures
– up to f of the N processes faulty 

In a synchronous system
– can use timeout to detect absence of a message
– cannot conclude process crashed if no reply
– impossibility with N ≤ 3f 

In an asynchronous system
– cannot use timeout to reliably detect absence of a 

message 
– impossibility with even one crash failure!!! 
– hence impossibility of reliable totally ordered

multicast...
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Impossibility with 3 Generals

Assume synchronous system
– 3 processes, one faulty 
– if no message received, assume ⊥
– proceed in rounds 
– messages ‘3:1:u’ meaning ‘3 says 1 says u’

Problem! ‘1 says v’ and ‘3 says 1 says u’
– cannot tell which process is telling the truth! 
– goes away if digital signatures used... 

Show
– no solution to agreement for N=3 and f=1 

Can generalise to impossibility for N ≤ 3f
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Impossibility with 3 Generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown in red

Commander faulty
p2  cannot tell which value sent 

by commander 

p3  sends illegal value p2 
p2  cannot tell which value sent 

by commander
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Impossibility with 3 Generals

So, if the solution exists
– p2 decides on value sent by commander (v) when the 

commander is correct 
– and also when commander faulty (w), since 

it cannot distinguish between the two scenarios 
Apply the same reasoning to p3

– conclude p3 must decide on x when commander faulty 
Thus
– contradiction to Agreement! 

since p2 decides on w, p3 on x if commander faulty 
– no solution exists
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But …

A solution exists for 4 processes with one faulty 
– commander sends value to each of the lieutenants 
– each lieutenant sends value it received to its peers
– if commander faulty, then correct lieutenants have 

gathered all values sent by the commander 
– if one lieutenant faulty, then each correct lieutenant 

receives 2 copies of the value from the commander 
Thus
– correct lieutenants can decide on majority of the values 

received 
Can generalise to N ≥ 3f + 1
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Four Byzantine Generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown redp4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

p2 decides majority(v,u,v) = v
p4 decides majority(v,v,w) = v

p2, p3 and p4 decide ⊥
(no majority exists)
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In Asynchronous Systems …

No guaranteed solution exists even for one failure!!! 
[Fisher, Lynch, Paterson ‘85] 

– does not exclude the possibility of consensus in the 
presence of failures 

– consensus can be reached with positive probability 
How can this be true?
– The Internet is asynchronous, exhibits arbitrary failures 

and uses consensus? 
Practical solutions exist using 
– failure masking (processes restart after crash)
– treatment of slow processes as “dead”

(partially synchronous systems) 
– randomisation
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Summary

Consensus algorithms
– are fundamental to achieve co-ordination 
– deal with crash or arbitrary (=Byzantine) failures 
– are subject t several impossibility results 

Solutions exist for synchronous systems
– if at most f crash failures, in f+1 rounds 
– if no more than f processes of N are faulty, N ≥ 3f + 1 

Solutions for asynchronous systems
– no guaranteed solution even for one failure! 
– practical solutions exist



74

References
In preparing the lectures I have used several sources.  
The main ones are the following:

Books: 
Coulouris, Dollimore, Kindberg. Distributed Systems –
Concepts and Design (CDK)

Slides:
Marco Aiello, course on Distributed Systems at the Free 
University of Bozen-Bolzano
CDK Website
Marta Kwiatkowska, U Birmingham, slides of course on 
DS


