
1

Distributed Systems

6. Remote Method Invocation

Werner Nutt

2

Remote Method Invocation

6.1 Communication between Distributed Objects

1. Communication between
Distributed Objects

2. Java RMI

3. Dynamic Code

3

Middleware

Middleware offers an infrastructure that enables
application processes to communicate with each other

Processes issue requests to the transportation layer
(i.e., the application takes the initiative, not the middleware)

Applications access the middleware via APIs, e.g.,

– creation and manipulation of sockets

Integration into programming languages

– remote procedure call (RPC)

– remote method invocation (RMI)

For higher level APIs, data has to be transformed before it
can be shipped (“data marshalling”)

Protocols for Client/Server Interaction (“Request/Reply”)

4

Why Middleware?

Distributed computing environments are heterogeneous:

Networks
– ATM, Ethernet, etc. have different protocols

Computer hardware
– data types (integers) can be represented differently

Operating systems
– e.g., TCP module can be part of OS (Unix/Linux) or not

Programming languages
– e.g., different paradigms (functional, OO, etc.)

– e.g., data structures (arrays, records) can be represented
differently

Applications implemented by different developers

5

Middleware Hides Heterogeneity

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

6

Middleware Characteristics

Location transparency

– client/server need not know their location

Sits on top of OS, independent of

– Communication protocols:

use abstract request-reply protocols over UDP, TCP

– Computer hardware:

use external data representation e.g. CORBA CDR

– Operating system:

use e.g. socket abstraction available in most systems

– Programming language:

e.g. CORBA supports Java, C++

7

Middleware Programming Models

Commonly used models:

Distributed objects and remote method invocation
(Java RMI, Corba)

Remote Procedure Call (Web services)

Remote SQL access (JDBC, ODBC)

Distributed transaction processing

CORBA (old):

provides remote object invocation between

– a client program written in one language and

– a server program written in another language

commonly used with C++

8

Objects

Object = data + methods

– logical and physical encapsulation

– accessed by means of references

– first class citizens, can be passed as arguments

Interaction via interfaces

– define types of arguments and exceptions of methods

m1
m2
m3

Data

implementation

object

of methods

m1
m2
m3

Data

implementation

object

of methods

interface

9

The Object Model

Programs are (logically and physically) partitioned into objects
distributing objects natural and easy

Interfaces
– the only means to access data

make them remote
Actions
– via method invocation
– interaction, chains of invocations
– may lead to exceptions part of interface

Garbage collection
– reduces programming effort, error-free (Java, not C++)

generalize to distributed garbage collection

10

The Distributed Object Model: Ideas

Objects are distributed
– client-server relationship at the object level

Extended with
– Remote interfaces
– Remote Method Invocation (RMI)
– Remote object references

invocation invocation
remote

invocation
remote

local
local

local

invocation

invocation
A B

C

D

E

F

11

The Distributed Object Model: Principles

invocation invocation
remote

invocation
remote

local
local

local

invocation

invocation
A B

C

D

E

F

Each process contains objects, some of which can receive
remote invocations, others only local invocations

Objects that can receive remote invocations are called remote objects

The remote interface specifies which methods can be invoked remotely

Objects need to know the remote object reference of an object in another
process in order to invoke its methods How do they get it?

12

Remote Object References

Object references

– used to access objects, which live in processes

– can be passed as arguments and results

– can be stored in variables

Remote object references

– object identifiers in a distributed system

– must be unique in space and time

– error returned if accessing a deleted object

– can allow relocation (see CORBA)

13

Remote Object Reference

Construct unique remote object reference

– IP address, port, interface name

– time of creation, local object number
(new for each object)

Use in the same way as local object references

If used as address

cannot support relocation

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

14

Remote Interfaces

Specify externally accessible methods

– no direct references to variables (no global memory)

– local interface is separate

Parameters

– input, output or both
(no output parameters in Java why?)

– call by value/by copy and call by reference

No pointers

– but references

No constructors

– but factory methods

15

A Remote Object and its Interface

CORBA: Interface Definition Language (IDL)
Java RMI: like other interfaces, extends class Remote

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

16

Handling Remote Objects

Exceptions (Java: RemoteException)

– raised in remote invocation

– clients need to handle exceptions

– timeouts in case server crashed or too busy

Garbage collection

– distributed garbage collection may be necessary

– combined local and distributed collector

– cf. Java reference counting
(remote object knows in which processes live proxies,
extra communication to inform server about creation and
deletion of proxies)

17

RMI Issues

Local invocations

– executed exactly once

Remote invocations

– via Request-Reply

– may suffer from communication failures!

retransmission of request/reply

message duplication, duplication filtering

no unique semantics…

18

Invocation Semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

19

Maybe Invocation

Remote method

– may execute once or not at all, invoker cannot tell

– useful only if failures are rare

Invocation message lost...

– method not executed

Result not received...

– was method executed or not?

Server crash...

– before or after method executed?

– if timeout, result could be received after timeout …

20

At-least-once Invocation

Remote method

– invoker receives result (executed at least once) or
exception (no result received)

– retransmission of request messages

Invocation message retransmitted …

– method may be executed more than once

– arbitrary failure (wrong result possible)

– method must be idempotent (repeated execution has
the same effect as a single execution) to be acceptable

Server crash...

– dealt with by timeouts, exceptions

21

At-most-once Invocation

Remote method

– invoker receives result (executed once) or exception
(no result)

– retransmission of reply and request messages

– receiver keeps history with results (how long?)

– duplicate filtering

Best fault-tolerance ...

– arbitrary failures prevented if method called
at most once

Used by CORBA and Java RMI

(however, based on TCP)

22

Transparency of RMI

Should remote method invocation be same as local?
– same syntax, see Java RMI (keyword Remote)
– need to hide:

• data marshalling
• IPC calls
• locating/contacting remote objects

Problems
– different RMI semantics? susceptibility to failures?
– protection against interference in concurrent scenario?

Approaches (Java RMI)
– transparent, but express differences in interfaces
– provide recovery features (IPC over TCP)

23

Remote Method Invocation

6.2 Java RMI

1. Communication between
Distributed Objects

2. Java RMI

3. Dynamic Code

24

Hello World: Remote Interface

import java.rmi.*;

public interface HelloInterface extends Remote {

/*

* Remotely invocable method,

* returns the message of the remote object,

* such as "Hello, world!"

* throws a RemoteException

* if the remote invocation fails

*/

public String say() throws RemoteException;

}

25

Hello World: Remote Object
import java.rmi.*;
import java.rmi.server.*;

public class Hello extends UnicastRemoteObject
implements HelloInterface {

private String message;
/* Constructor for a remote object
* Throws a RemoteException if exporting the object fails
*/

public Hello (String msg) throws RemoteException {
message = msg;

}
/* Implementation of the remotely invocable method
*/

public String say() throws RemoteException {
return message;

}
}

26

Hello World: Server

import java.io.*;
import java.rmi.*;

public class HelloServer{
/*
* Server program for the "Hello, world!" example.
*/
public static void main (String[] args) {

try {
Naming.rebind ("SHello",

new Hello ("Hello, world!"));
System.out.println ("HelloServer is ready.");

} catch (Exception e) {
System.out.println ("HelloServer failed: " + e);

}
}

}

27

Hello World: Client

import java.io.*;
import java.rmi.*;

public class HelloClient{
/*
* Client program for the "Hello, world!" example
*/
public static void main (String[] args) {

try {
HelloInterface hello = (HelloInterface)

Naming.lookup ("//russel.inf.unibz.it/SHello");
System.out.println (hello.say());

} catch (Exception e) {
System.out.println ("HelloClient failed: " + e);

}
}

}

28

Hello World: Compilation

On the server side
– start the RMI registry: rmiregistry &

(Standard port number 1099)

– compile with Java compiler: HelloInterface.java,
Hello.java, HelloServer.java

– compile with RMI compiler: Hello
• command: rmic Hello

produces class Hello_Stub.class

(previously Hello_Stub and Hello_Skel)

On the client side
– compile HelloClient

• class HelloInterface.class needs to be accessible

29

RMI Architecture

Stubs Skeletons/

Remote Reference Layer

Transport Layer

Client ServerApplication

RMI
System

30

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Carries out
Request-reply protocol,
responsible for
semantics.
In Java RMI realized by
RemoteRef

31

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Translates between local and remote object references,
creates remote object references.
Uses remote object table
(relating remote and local object references, plus proxies)

32

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

RMI software - between
application level objects
and communication and
remote reference
modules
(according to JRMP v1.1)

33

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Proxy - makes RMI transparent to client. Class implements
Remote interface. Marshals requests and unmarshals
results. Forwards request.

34

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Dispatcher - gets request from communication module and
invokes method in skeleton (using methodID in message).

35

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Skeleton - implements methods in remote interface.
Unmarshals requests and marshals results. Invokes
method in remote object.

36

Communication Modules

Reside in client and server virtual machine

Carry out Request-Reply jointly

– implement given RMI semantics
(at least once, at most once, exactly once)

Server’s communication module

– calls Remote Reference Module to convert remote
object reference to local

37

Remote Reference Module

Creates remote object references and proxies

Translates remote to local references (object table):

– correspondence between remote and
local object references (proxies)

Called by RMI software

– when marshalling/unmarshalling

38

RMI Software Architecture

Proxy/Stub
– behaves like local object to client
– forwards requests to remote object

Dispatcher
– receives request
– selects method and passes on request to skeleton

Skeleton
– implements methods in remote interface

• unmarshals data, invokes remote object
• waits for result, marshals it and returns reply

39

Hello Skeleton/1

// Skeleton class generated by rmic, do not edit.
// Contents subject to change without notice.

public final class Hello_Skel
implements java.rmi.server.Skeleton

{
private static final java.rmi.server.Operation[] operations = {

new java.rmi.server.Operation("java.lang.String say()")
};

private static final long interfaceHash = -7469971880086108926L;

public java.rmi.server.Operation[] getOperations() {
return (java.rmi.server.Operation[]) operations.clone();

}

40

Hello Skeleton/2

public void dispatch(java.rmi.Remote obj, java.rmi.server.RemoteCall call, int opnum, long hash)
throws java.lang.Exception

{
if (hash != interfaceHash)

throw new java.rmi.server.SkeletonMismatchException("interface hash mismatch");

Hello server = (Hello) obj;
switch (opnum) {
case 0: // say()
{

call.releaseInputStream();
java.lang.String $result = server.say();
try {

java.io.ObjectOutput out = call.getResultStream(true);
out.writeObject($result);

} catch (java.io.IOException e) {
throw new java.rmi.MarshalException("error marshalling return", e);

}
break;

}
}}}

41

Hello Stub/1

// Stub class generated by rmic, do not edit.
// Contents subject to change without notice.

public final class Hello_Stub
extends java.rmi.server.RemoteStub
implements HelloInterface, java.rmi.Remote

{
private static final java.rmi.server.Operation[] operations = {

new java.rmi.server.Operation("java.lang.String say()")
};

private static final long interfaceHash = -7469971880086108926L;

// constructors
public Hello_Stub() {

super();
}
public Hello_Stub(java.rmi.server.RemoteRef ref) {

super(ref);
}

42

Hello Stub/2

// methods from remote interfaces

// implementation of say()
public java.lang.String say()

throws java.rmi.RemoteException
{

try {
java.rmi.server.RemoteCall call = ref.newCall((java.rmi.server.RemoteObject) this,

operations, 0, interfaceHash);
ref.invoke(call);
java.lang.String $result;
try {

java.io.ObjectInput in = call.getInputStream();
$result = (java.lang.String) in.readObject();

} catch (java.io.IOException e) {
throw new java.rmi.UnmarshalException("error unmarshalling return", e);

} catch (java.lang.ClassNotFoundException e) {
throw new java.rmi.UnmarshalException("error unmarshalling return", e);

} finally {
ref.done(call);

}
return $result;

43

Hello Stub/3

} catch (java.lang.RuntimeException e) {
throw e;

} catch (java.rmi.RemoteException e) {
throw e;

} catch (java.lang.Exception e) {
throw new java.rmi.UnexpectedException("undeclared checked exception", e);

}
}

}

44

// Stub class generated by rmic, do not edit.
// Contents subject to change without notice.

public final class Hello_Stub
extends java.rmi.server.RemoteStub
implements HelloInterface, java.rmi.Remote

{
private static final long serialVersionUID = 2;

private static java.lang.reflect.Method $method_say_0;

static {
try {

$method_say_0 = HelloInterface.class.getMethod("say", new java.lang.Class[] {});
} catch (java.lang.NoSuchMethodException e) {

throw new java.lang.NoSuchMethodError(
"stub class initialization failed");

}
}

Hello Stub/1

45

Hello Stub/2

// constructors

public Hello_Stub(java.rmi.server.RemoteRef ref) {

super(ref);

}

46

HelloStub/3

// methods from remote interfaces

// implementation of say()
public java.lang.String say()

throws java.rmi.RemoteException
{

try {
Object $result = ref.invoke(this, $method_say_0, null, -3164833839299227514L);
return ((java.lang.String) $result);

} catch (java.lang.RuntimeException e) {
throw e;

} catch (java.rmi.RemoteException e) {
throw e;

} catch (java.lang.Exception e) {
throw new java.rmi.UnexpectedException("undeclared checked exception", e);

}
}

}

47

The Methods of the Naming Class

void rebind (String name, Remote obj)

– This method is used by a server to register the identifier of a
remote object by name

void bind (String name, Remote obj)

– This method can alternatively be used by a server to register a
remote object by name, but if the name is already bound to a
remote object reference an exception is thrown.

void unbind (String name, Remote obj)

– This method removes a binding.
Remote lookup (String name)

– This method is used by clients to look up a remote object by
name. A remote object reference is returned.

String [] list()

– This method returns an array of Strings containing the names
bound in the registry.

48

Exercise: Callback

Write a chat version where

the server has
– a Multicaster object with method send(String)

each client has
– a Display object with method show(String)

both classes and methods are remote.

Clients invoke send and the server invokes show.

Sending a string means showing it on all displays.

How can one implement this?

49

Remote Method Invocation

6.3 Dynamic Code

1. Communication between
Distributed Objects

2. RMI

3. Dynamic Code

50

Parameter Passing

Remote methods can have arguments and return results
arguments: client → server
results: server → client

Local case
Parameters are passed by value (if atomic) or by reference

Remote case
Atomic values: by value
Remote objects: by remote reference

(represented by stub/proxy)
Other objects: must be Serializable! Then by copy.
Exception if not serializable (cannot be "marshalled")

51

Dynamic Code Downloading

A client

holds a remote reference to an instance
of a remote interface

needs stub class for the referenced remote object

needs classes for arguments and
return values of remote methods

Where should these classes come from?

client stores all possible classes locally (bad because ...)

client retrieves classes when needed from server host

52

Example: Generic Echo Server

Server: exports generic method

public <T> T doEcho(T input) throws RemoteException;

that is, for any type T, echo an object of the same type as the input

Client: invokes doEcho with a type unknown to the server

Shows same problem as compute server,

which accepts tasks to compute results of arbitrary types

public <T> T execute(Task<T> task) ...

53

Echo Interface

/* Similar in spirit to HelloWorld */

import java.rmi.*;

public interface EchoInterface extends Remote
{

public <T> T doEcho(T input)

throws RemoteException;

}

54

Echo Remote Object

import java.rmi.*;
import java.rmi.server.*;

public class Echo extends UnicastRemoteObject
implements EchoInterface {

public Echo () throws RemoteException {
super();

}

public <T> T doEcho(T input)
throws RemoteException {

return input;
}

}

Constructor

echoes its input

55

import java.io.*;
import java.rmi.*;

public class EchoServer{

public static void main (String[] argv) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new SecurityManager());
}

try {
Naming.rebind ("//localhost/Echo", new Echo());
System.out.println ("Echo Server is ready.");

} catch (Exception e) {
System.out.println ("Echo Server failed: " + e);

}
}

}

Echo Server

The security manager is is new!

56

Server Classes

A client using the Echo object needs two server classes

EchoInterface.class: at compile time

must be known by developers and made available, e.g., at URL,

Echo_Stub.class: at runtime

depends on implementation, e.g., Echo could implement > 1 interfaces

developers on server side may create new classes
that implement EchoInterface

best downloaded automatically for a remote reference

⇒ remote reference should contain info about stub location

57

Codebases

Locations where server and client can make available
classes for each other

Described by URLs, e.g.,
codebase=

http://www.inf.unibz.it/~nutt/classes/EchoServerCode/
codebase=

file:/home/nutt/public_html/classes/EchoServerCode/

Classes from a codebase are retrieved
by contacting a web server
by accessing them on a common file system

58

Codebase Annotations

If a Java application finds a class in a codebase,

then it annotates

- references to

- copies of

instances that class with the codebase.

For example,

the RMI registry annotates references

a client annotates serialized copies

A codebase is defined as the value of the property
java.rmi.server.codebase,

Usage
java ... -Djava.rmi.server.codebase=<codebase> ...

59

Security

Code downloaded from other sites can be harmful

In Java one can:

define security policies

set up a security manager in an application

let the manager check whether operations
satisfy the policies

60

Security Policies: Examples

grant {

permission java.security.AllPermission;};

Allow anyone to do anything

grant
codeBase "http://www.foo.net/nice/classes/" {

permission java.security.AllPermission;};

Allow code from a specific codebase to do anything

61

Policy Files and Properties

Policies

- are stored in files, e.g. clientPolicy.pol

- are assigned to properties, e.g.,
java ... -Djava.security.policy

= clientPolicy.pol
...

62

Echo Client Sending a String

import java.rmi.*;
import java.io.*;

public class EchoClientString {

public static void main (String[] args) {
if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());}

try {
EchoInterface echo =
(EchoInterface) Naming.lookup

("//localhost/Echo");
System.out.println (echo.doEcho(args[0]));

} catch (Exception e) {
System.out.println ("EchoClientString exception: " + e);

}
}

}

63

Starting the Server

java -Djava.rmi.server.codebase

=file:/Users/nutt/Java/classes/EchoServerCode/

-Djava.security.policy=serverPolicy.pol

EchoServer

Note that here

- the interface class and the Echo stub class are in the directory
EchoServerCode

- the security policy of the server is defined in
the file serverPolicy.pol

Don't forget the backslash at the end of
.../EchoServerCode/ !

64

Compiling and Starting the Client

javac –cp .:/Users/nutt/Java/classes/EchoInterface/

EchoClientString.java

Note here
the interface class is in EchoInterface

the class path contains two directories

65

Starting the Client

java -cp .:/Users/nutt/Java/classes/EchoInterface/

-Djava.security.policy=clientPolicy.pol

EchoClientString

'Hello!'

Note here

we use the same class path for the interface

the stub is downloaded from the server codebase ...

... if the security policy allows this

the string 'Hello!' is echoed

66

Summary So Far

The client can download classes from the server side

from the common file system

from a web server

The client's security policy has to allow this

We have not seen yet

the server downloading from the client

67

A Wrapper Class for Strings
(Just for the Example)

import java.io.*;

public class MyString implements Serializable{

String myString;

public MyString(String string) {
myString = string; }

public String getString() {
return myString; }

}

If a client sends this, the server needs more info …

68

import java.rmi.*;
import java.io.*;

public class EchoClientMyString {

public static void main (String[] args) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new SecurityManager());

}
try {
EchoInterface echo =

(EchoInterface) Naming.lookup("//localhost/Echo");
MyString input = new MyString(args[0]);
MyString output = echo.doEcho(input);
System.out.println (output.getString());

} catch (Exception e) {
System.out.println ("EchoClientString exception: " + e);

}
}

}

The server
• receives a
MyString object

The server
• returns a MyString

Server Receiving and
Sending MyStrings

69

Starting the MyString Client

java -cp .:/Users/nutt/Java/classes/EchoInterface/

-Djava.rmi.server.codebase

=file:/Users/nutt/Java/classes/EchoClientCode/

-Djava.security.policy

=clientPolicy.pol

EchoClientString

'Hello!‘

Note:

the client classes that the server needs are in
.../EchoClientCode/

the client has a codebase property

every MyString copy will be annotated with the codebase

the server can download the classes of the client

70

Summary

Java RMI

implements a remote object model

provides a much more abstract view of interoperating
processes than socket communication

is based on TCP, but hides this

allows code to be downloaded at runtime, using the Web
mechanism (URLs and Web servers)

is powerful on intranets, but is often stopped by firewalls

can tunnel through firewalls, but at a significant cost

71

References

In preparing the lectures I have used several sources.

The main ones are the following:

Books:

Coulouris, Dollimore, Kindberg. Distributed Systems – Concepts and
Design (CDK)

Slides:

Marco Aiello, course on Distributed Systems at the Free University of
Bozen-Bolzano

Andrew Tanenbaum, Slides from his website

CDK Website

Marta Kwiatkowska, U Birmingham, slides of course on DS

Ken Baclawski, Northeastern University

