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5.4 Principles of Reliable Data Transfer
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Transport Services and Protocols

Provide communication
between application processes 
running on different hosts
Transport protocols run in 
end systems
– send side: breaks application 

messages into segments, 
passes to  network layer

– receive side: reassembles 
segments into messages, 
passes to application layer

Two transport protocol available 
to Internet applications
– TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport
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Transport vs. Network Layer

Network layer: communication between hosts

Transport layer: communication between processes
– relies on, enhances, network layer services
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5. Transport Protocols

5.2 Multiplexing and Demultiplexing

5.1 Transport-layer Services
5.2 Multiplexing and Demultiplexing
5.3 Connectionless Transport: UDP
5.4 Principles of Reliable Data Transfer
5.5 Connection-oriented Transport: TCP
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Multiplexing/Demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at receive host:
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:
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How Demultiplexing Works
Host receives IP datagrams
– each datagram has 

source IP address, 
destination IP address

– each datagram carries 
1 transport-layer segment

– each segment has source, 
destination port number 

Host uses IP addresses and 
port numbers to direct segment 
to appropriate socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format
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Connectionless Demultiplexing

Create sockets with port numbers:

DatagramSocket mySocket1 = 
new DatagramSocket(12534);

DatagramSocket mySocket2 = 
new DatagramSocket(12535);

UDP socket identified by  2-tuple:

(dest IP address, dest port number)

When host receives UDP 
segment:
– checks destination port

number in segment
– directs UDP segment to 

socket with that port number
IP datagrams with different
source IP addresses and/or 
source port numbers directed to 
same socket
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Connectionless Demultiplexing (cntd)

DatagramSocket serverSocket = 
new DatagramSocket(6428);

Client
IP: B

P2

Client
IP: A

P1P1P3

Server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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Connection-oriented Demultiplexing

A TCP socket is identified by 
a 4-tuple: 
– source IP address
– source port number
– dest IP address
– dest port number

Receiving host uses all four 
values to direct segment to 
appropriate socket

Server host may support many 
simultaneous TCP sockets:
– each socket identified by its 

own 4-tuple
Web servers have different 
sockets for each connecting 
client
– non-persistent HTTP will 

have a different socket for 
each request

Exercise: In Firefox, type
about:config

and check out
network.http.max-
connections-per-server
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Connection-oriented Demultiplexing (cntd)

Client
IP: B

P1

Client
IP: A

P1P2P4

Server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP: C
S-IP: A
D-IP: C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Connection-oriented Demultiplexing: 
Threaded Server

Client
IP: B

P1

Client
IP: A

P1P2

Server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP: C
S-IP: A
D-IP: C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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5. Transport Protocols

5.3 Connectionless Transport: UDP

5.1 Transport-layer Services
5.2 Multiplexing and Demultiplexing
5.3 Connectionless Transport: UDP
5.4 Principles of Reliable Data Transfer
5.5 Connection-oriented Transport: TCP
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UDP: User Datagram Protocol [RFC 768]

“No frills” Internet 
transport protocol
“Best effort” service, 
UDP segments may be:
– lost
– delivered out of order to 

application
Connectionless:
– no handshaking between 

UDP sender, receiver
– each UDP segment 

handled independently of 
others

Why is there a UDP?
no connection establishment 
(which can add delay)
simple: no connection state 
at sender, receiver
small segment header
no congestion control: 
UDP can blast away as fast 
as desired
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UDP Segment Format

source port # dest port #

32 bits

Application
data 

(message)

length checksum
Length, in

bytes of UDP
segment,
including

header
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UDP Checksum

Sender:
Treat segment 
contents as sequence 
of 16-bit integers
checksum: addition 
(1’s complement sum) 
of segment contents
sender puts checksum 
value into UDP 
checksum field

Receiver:
Compute checksum of 
received segment
Check if computed 
checksum equals 
checksum field value:
– NO - error detected
– YES - no error detected. 

But maybe errors 
nonetheless?

Goal: Detect “errors” (e.g., flipped bits) in transmitted segment
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Internet Checksum Example

Note
when adding numbers, a carry from the most 
significant bit needs to be added to the result

Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum
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5. Transport Protocols

5.4 Principles of Reliable Data Transfer

5.1 Transport-layer Services
5.2 Multiplexing and Demultiplexing
5.3 Connectionless Transport: UDP
5.4 Principles of Reliable Data Transfer
5.5 Connection-oriented Transport: TCP
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Principles of Reliable Data Transfer

Important in application, transport, data link layers

Characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (RDT)
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Principles of Reliable Data Transfer

Important in application, transport, data link layers

Characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (RDT)
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Principles of Reliable Data Transfer

Important in application, transport, data link layers

Characteristics of unreliable channel will determine complexity 
of reliable data transfer protocol (RDT)
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Reliable Data Transfer: Getting Started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by RDT,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by RDT 
to deliver data to upper
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Reliable Data Transfer: Getting Started

We will:
incrementally develop the sender, receiver sides of a
reliable data transfer protocol (RDT)
consider only unidirectional data transfer
– but control info will flow on both directions!

use finite state machines (FSM)  to specify sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely 
determined by next 

event
event
actions
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RDT1.0: Reliable Transfer over a Reliable Channel

Underlying channel perfectly reliable
– no bit errors
– no loss of packets

Separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver reads data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

Sender Receiver
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RDT2.0: Channel with Bit Errors

Underlying channel may flip bits in packet
– checksum to detect bit errors

The question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells 

sender that packet was received OK
– negative acknowledgements (NAKs): receiver explicitly 

tells sender that packet had errors
– sender retransmits packet on receipt of NAK

New mechanisms in RDT2.0 (beyond RDT1.0):
– error detection
– receiver feedback: control messages (ACK,NAK) 

receiver → sender
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RDT2.0: FSM Specification

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

belowSender

Receiver
rdt_send(data)

Λ
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RDT2.0: Operation without Errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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RDT2.0: Error Scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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RDT2.0 Has a Fatal Flaw!

What happens if 
ACK/NAK is corrupted?
Sender doesn’t know 
what happened at the 
receiver!
It can’t just retransmit: 
possible duplicate

Handling duplicates: 
Sender retransmits current 
pkt if ACK/NAK corrupted
sender adds sequence 
number to each pkt
receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

“Stop and Wait” Protocol
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RDT2.1: Sender, Handles Corrupted ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

Λ
Λ
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RDT2.1: Receiver, Handles Corrupted ACK/NAKs

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)
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RDT2.1: Discussion

Sender:
Sequence # added to 
packet
Two sequence #’s (0,1) 
will suffice.  Why?
Must check if received 
ACK/NAK corrupted
Twice as many states
– state must 

“remember” whether 
“current” packet has 
sequence# 0 or 1

Receiver:
Must check if received 
packet is duplicate
– state indicates 

whether 0 or 1 is 
expected packet 
sequence #

Note: receiver cannot
know if sender received 
its last ACK/NAK OK
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RDT2.2: A Protocol w/o NAK

Same functionality as RDT2.1, using ACKs only

Instead of NAK, receiver sends ACK 
for last packet received OK
– receiver must explicitly include 

seq# of packet being ACKed

duplicate ACK at sender results in same action as NAK: 
retransmit current packet



34

RDT2.2: Sender, Receiver (Fragments)

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0
Sender FSM

fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
Receiver FSM

fragment

Λ



35

RDT3.0: Channels with Errors and Loss

New assumption:
Underlying channel can also 
lose packets (data or ACKs):
– checksum
– sequence #s
– ACKs
– retransmissions 

will be of help, but not 
enough

Approach:
Sender waits “reasonable”
amount of time for ACK 
Retransmits if no ACK received 
in this time
If packet (or ACK) is just 
delayed (not lost):
– retransmission will be  

duplicate, but use of 
seq #’s already handles this

– receiver must specify seq # 
of packet being ACKed

Requires countdown timer
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RDT3.0 Sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ
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RDT3.0 in Action
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RDT3.0 in Action
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Performance of RDT3.0

RDT3.0 works, but performance is poor
Example: 1 Gbps link, 15 ms propagation delay, 

8000 bit packet:

Usender: utilization – fraction of time sender is busy sending

U 
sender =

.008 
30.008 

= 0.00027 
i

L / R
RTT + L / R

=

1KB packet every 30 msec 
→ 33KB/sec throughput over 1 Gbps link

Network protocol limits use of physical resources!

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans
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RDT3.0: Stop-and-wait Operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, 
send ACK

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender =

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

=
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Pipelined Protocols

Pipelining: sender allows multiple, “in-flight”, 
yet-to-be-acknowledged packets
– range of sequence numbers must be increased
– buffering at sender and/or receiver

Two generic forms of pipelined protocols: 
Go-Back-N and Selective Repeat
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Pipelining: Increased Utilization

first packet bit transmitted, t = 0

Sender Receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

U 
sender =

.024
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

=
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Pipelining Protocols

Go-back-N: Overview
Sender: up to N unACKed 
packets in pipeline
Receiver: only sends 
cumulative ACKs
– does not ACK packet if 

there is a gap
Sender: has timer for oldest 
unACKed packet
– if timer expires: 

retransmit all unACKed 
packets

Selective Repeat: Overview
Sender: up to N unACKed 
packets in pipeline
Receiver: ACKs individual pkts
Sender: maintains timer for each 
unACKed packet
– if timer expires: retransmit 

only unACKed packet
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Go-Back-N

Sender:
k-bit sequence # in packet header
“window” of up to N, consecutive unACKed packets allowed

ACK(n): ACKs all packets up to, including seq # n — “cumulative ACK”
– may receive duplicate ACKs (see receiver)

Timer for each in-flight pkt
Timeout(n): retransmit packet n and all higher seq # packets in window
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Go-Back-N
in Action
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Selective Repeat

Receiver individually acknowledges all correctly 
received pkts
– buffers pkts, as needed, for eventual in-order delivery 

to upper layer
Sender only resends pkts for which ACK not received
– sender timer for each unACKed pkt

Sender window
– N consecutive seq #’s
– again limits seq #s of sent, unACKed pkts
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Selective Repeat: Sender, Receiver Windows
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Selective Repeat

Data from application (above):
if next available seq # in 
window, send pkt

Timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:
mark pkt n as received
if n smallest unACKed pkt, 
advance window base to next 
unACKed seq # 

Sender
Pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also deliver 
buffered, in-order pkts), 
advance window to next not-yet-
received pkt

Pkt n in [rcvbase-N,rcvbase-1]
ACK(n)

Otherwise:
ignore 

Receiver
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Selective Repeat in Action
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Selective Repeat:
Dilemma

Example: 
seq #’s: 0, 1, 2, 3
window size=3

Receiver sees no 
difference in two 
scenarios!
Incorrectly passes 
duplicate data as new 
in (a)

Q: what relationship should 
hold between seq # size 
and window size?
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5. Transport Protocols

5.5 Connection-oriented Transport: TCP

5.1 Transport-layer Services
5.2 Multiplexing and Demultiplexing
5.3 Connectionless Transport: UDP
5.4 Principles of Reliable Data Transfer
5.5 Connection-oriented Transport: TCP
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TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581

Full duplex data:
– bi-directional data flow in same 

connection
– MSS: maximum segment size

Connection-oriented:
– handshaking (exchange of 

control msgs) initialises sender, 
receiver state before data 
exchange

Point-to-point:
– one sender, one receiver

Reliable, in-order byte steam:
– no “message boundaries”

Pipelined:
– TCP congestion and flow 

control set window size
Send & receive buffers
Flow controlled:
– sender will not overwhelm 

receiver

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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TCP Segment Structure

Source Port # Dest Port #

32 bits

Application
data 

(variable length)

Sequence Number
Acknowledgement Number

Receive window

Urg data pointerChecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection establishing

(setup, teardown
commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP Sequence #’s and ACKs

Seq. #’s:
– byte stream 

“number” of first 
byte in segment’s 
data

ACKs:
– seq # of next byte 

expected from other 
side

– cumulative ACK
Q: how receiver 
handles out-of-order 
segments
– A: TCP spec doesn’t 

say, - up to 
implementer

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
Simple telnet scenario
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TCP Round Trip Time and Timeout

Q: How to set TCP timeout 
value?
longer than RTT
– but RTT varies

too short: premature 
timeout
– unnecessary 

retransmissions
too long: slow reaction to 
segment loss

Q: How to estimate RTT?
SampleRTT: measured time from 
segment transmission until ACK 
receipt
– ignore retransmissions
SampleRTT will vary, want 
estimated RTT “smoother”
– average several recent 

measurements, not just current 
SampleRTT
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TCP Round Trip Time and Timeout

EstimatedRTT =  (1- α)* EstimatedRTT
+    α * SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125
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Example RTT Estimation
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout
EstimatedRTT plus “safety margin”
– large variation in EstimatedRTT → larger safety margin

First, estimate of how much SampleRTT deviates from 
EstimatedRTT: 

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)* DevRTT +

β * |SampleRTT - EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:
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TCP Reliable Data Transfer

TCP creates RDT service 
on top of IP’s unreliable 
service
TCP features 
– pipelined segments
– cumulative ACKs

TCP uses by default single 
retransmission timer
Retransmissions are 
triggered by:
– timeout events
– duplicate ACKs

Consider simplified
TCP sender:
– ignore congestion 

control
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TCP Sequence Numbers

Sequence number of a segment: 
Byte stream number of first byte in segment

Example: A sends to B over TCP 
500k image with MSS = 1k,
initial sequence number = 0
500 segments, 
with sequence numbers 0, 1024, 2048, ...
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TCP Acknowledgement Numbers
Acknowledgement number in segment sent from B to A: 

Sequence number of next byte B is expecting from A

Example:
B has received segments 1, 2, and 4, but not 3. 
Acknowledgement number is 2048 

(= 1st byte of segment 3)

Example shows: 
Acknowledgement is cumulative 

(acknowledges all bytes up to Ack - 1)  
No mention of out-of-order segments
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TCP Sender Events:

Data received from application:
create segment with seq #
seq # is byte-stream number 
of first data byte in  segment
start timer if not already 
running (think of timer as for 
oldest unACKed segment)
expiration interval: 
TimeOutInterval

Timeout:
retransmit segment that 
caused timeout
restart timer

ACK received:
if acknowledges previously 
unACKed segments
– update what is known to 

be ACKed
– start timer if there are  

outstanding segments
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TCP Sender Actions
Client variables

ackSNo = initialSequenceNumber // ack'ed sequence #
nextSNo = initialSequenceNumber // next sequence #

Loop through the following cases:

if (data received from application){
create segment with sequence number nextSNo;
start timer for segment nextSNo;
pass segment to IP;
nextSNo = nextSNo + data.length}

if (timeout for segment with sNo y){
retransmit segment y;
restart timer for segment y}
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TCP Sender Actions (cntd)
if (ACK received with AckNo = y)

if (y > ackSNo){ // cumulative ack
cancel timers for segments with lower SNos;
ackSNo = y}

else { // duplicate ack
increment counter for duplicate acks for y;
if (number of duplicate acks for y == 3) {

retransmit segment y;
restart timer for segment y
}

}
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TCP: Retransmission Scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
Premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2 

tim
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2 

tim
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100
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TCP retransmission scenarios (cntd)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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Fast  Retransmit

Time-out period often 
relatively long:
– long delay before 

resending lost packet

Detect lost segments
via duplicate ACKs
– sender often sends many 

segments back-to-back
– if segment is lost, there 

will likely be many 
duplicate ACKs for that 
segment

If sender receives 
3 ACKs for same data, 
it assumes that the 
segment after ACKed 
data was lost:
– fast retransmit: resend 

segment before timer 
expires



68

Host A

tim
eo

ut

Host B

time

X

resend seq X2

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs
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TCP Receiver Actions

Event
Segment arrives with expected 
SNo, all previous data already 
ack'ed

Segment arrives with expected 
SNo, preceding segment 
received, but not ack'ed

Out-of-order segment arrives 
with higher SNo than expected

Out-of-order segment arrives 
with lower SNo than expected

Action
Wait up to 500 ms for arrival of 
another segment. Then send ack

Send cumulative ack

Send duplicate ack, indicating 
SNo of next expected byte

Send duplicate ack, indicating 
SNo of next expected byte
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Flow Control
Receiver's buffer has size RcvBuffer

Receiver maintains variables
LastByteRead
LastByteReceived

Constraint:
LastByteReceived - LastByteRead <= RcvBuffer
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Flow Control (cntd)
Receiver communicates to sender 

RcvWindow =  
RcvBuffer - (LastByteReceived - LastByteRead)

Sender maintains variables
LastByteSent
LastByteAcked

Sender makes sure

LastByteSent - LastByteAcked <= RcvWindow
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TCP Connection Management

Recall: TCP sender, receiver 
establish “connection” before 
exchanging data segments
initialize TCP variables:
– sequence #s
– buffers, flow control info 

(e.g. RcvWindow)
Client: connection initiator
Socket clientSocket =    
new Socket("hostname",     

"port number");

Server: contacted by client
Socket connectionSocket 
= serverSocket.accept();

Three Way Handshake

Step 1: client host sends TCP 
SYN segment to server
– specifies initial sequence #
– no data

Step 2: server host receives SYN, 
replies with SYNACK segment

– server allocates buffers
– specifies server initial 

sequence #
Step 3: client receives SYNACK, 

replies with ACK segment, which 
may contain data
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Establishing a TCP Connection 

Why are sequence numbers exchanged?
Why does the sender acknowledge?

“Three way handshake”
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TCP Connection Management (cntd)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends 
TCP FIN control segment to 
server

Step 2: server receives FIN, 
replies with ACK. Closes 
connection, sends FIN. 

client

FIN

server

ACK

ACK

FIN

close

closing

closed

tim
ed

 w
ai

t
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TCP Connection Management (cntd)

Step 3: client receives FIN, 
replies with ACK

– Enters “timed wait” - will 
respond with ACK to 
received FINs

Step 4: server, receives ACK.  
Connection closed

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed
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TCP Life Cycle of a Client
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TCP Life Cycle of a Server
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