
1

Distributed Systems

2. Application Layer

Werner Nutt

2

Network Applications: Examples

E-mail

Web

Instant messaging

Remote login

P2P file sharing

Multi-user network games

Streaming stored video clips

Social networks

Voice over IP

Real-time video conferencing

Grid computing

3

Creating a Network App

Write programs that

– run on (different) end
systems

– communicate over network

e.g., web server software
communicates with browser
software

No need to write software for

network-core devices

– Network-core devices do not
run user applications

– applications on end systems
allows for rapid application
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

4
2: Application Layer 4

Application Architectures

Client-server

Peer-to-peer (P2P)

Hybrid of client-server and P2P

5

Client-server Architecture

Server:
– always-on host

– permanent IP address

– server farms for scaling

Clients:
– communicate with server

– may be intermittently
connected

– may have dynamic IP
addresses

– do not communicate directly
with each other

Client/Server

6

Pure P2P Architecture

No always-on server

Arbitrary end systems
directly communicate

Peers are intermittently
connected and change IP
addresses

Highly scalable but difficult to
manage

Peer-Peer

7

Hybrid of Client-server and P2P

Skype
– voice-over-IP P2P application
– centralized server: finding address of remote party:

– client-client connection: direct (not through server)

Instant messaging
– chatting between two users is P2P
– centralized service: client presence detection/location

• user registers its IP address with central server when it
comes online

• user contacts central server to find IP addresses of
buddies

8

Communication Between Processes

Process: program running

within a host.

within same host, two
processes communicate
using inter-process
communication (defined
by OS).

processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

Note: applications with
P2P architectures have
client processes & server
processes

9

Process sends/receives
messages to/from its socket

Socket analogous to door

– sending process shoves
message out door

– sending process relies on
transport infrastructure on
other side of door which
brings message to socket at
receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
application
developer

API allows: (1) choice of transport protocol

(2) ability to fix a few parameters (more on this later)

Sockets

10

To receive messages, a
process must have an
identifier

A host device has a unique
32-bit IP address
Exercise: Find out the IP
address of your laptop/desktop

Does the IP address of
the host on which a
process runs suffice for
identifying the process?
. . .

Identifier includes both
IP address and port
numbers associated with
processes on the host

Example port numbers:

– HTTP server: 80

– Mail server: 25

Addressing Processes

11

Assigned Port Numbers

FTP Data 20

FTP Control 21

SSH 22

Telnet 23

SMTP 25

Domain Name Server 42

Whois 43

HTTP 80

POP3 110

IMAP4 143

BGP 179

HTTPS 443

IMAP4 over SSL 993

Assigned by IANA
(= Internet Assigned

Numbers Authority)

Numbers between 0 and
1023 are “well-known”
ports — opening a port
for such numbers
requires privileges

can be found
- on the Web
- in “/etc/services”
under Linux and MAC/OS

12
2: Application Layer 12

Application Layer Protocols Define …

Types of messages
exchanged,

– e.g., request, response

Message syntax:
– fields in messages and how

fields are delineated

Message semantics
– meaning of information in

fields

Rules for when and how
processes send & respond
to messages

Public-domain protocols:
defined in RFCs

allows for interoperability

e.g., HTTP, SMTP,
BitTorrent

Proprietary protocols:
e.g., Skype

13

Data loss
Some loss can be tolerated:
audio, video
100% reliability needed: file
transfer, telnet

Timing

Delays can be tolerated:
file transfer

Low delays needed:
internet telephony,
interactive games

What Transport Service Does an Application Need?

Data Throughput

Ineffective with throughput
below minimum: multimedia

Run with whatever is
offered: “elastic
applications”

Security

Encryption, data integrity,
…

14

Application

File transfer
E-mail

Web documents
Real-time audio/video

Stored audio/video
Interactive games
Instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Transport Service Requirements of Common Applications

15

TCP service:

Connection-oriented: setup
required between client and server
processes

Reliable transport between
sending and receiving process

Flow control: sender won’t
overwhelm receiver

Congestion control: throttle sender
when network overloaded

Does not provide: timing, minimum
throughput guarantees, security

UDP service:
Unreliable data transfer
between sending and
receiving process

Does not provide:
connection setup, reliability,
flow control, congestion
control, timing, throughput
guarantee, or security

Why bother?

Why is there a UDP?

Internet Transport Protocol Services

16

Applications and Transport Protocols

Application Application-layer Underlying Transport

protocol Protocol

Electronic mail SMTP TCP

Remote terminal access Telnet TCP

Web HTTP TCP

File transfer FTP TCP

Streaming multimedia HTTP, RTP TCP or UDP

Internet telephony SIP, proprietary typically UDP

Network management SNMP typically UDP

Routing protocol RIP, OSPF typically UDP

Name translation DNS typically UDP

