
1

Distributed Systems

5. Remote Method Invocation

Werner Nutt

2

Remote Method Invocation

5.1 Communication between Distributed Objects

1. Communication between
Distributed Objects

2. RMI

3

Middleware

Middleware offers an infrastructure that enables
application processes to communicate with each other

Processes issue requests to the transportation layer
(i.e., the application takes the initiative, not the middleware)

Applications access the middleware via APIs, e.g.,

– creation and manipulation of sockets

Integration into programming languages

– remote procedure call (RPC)

– remote method invocation (RMI)

For higher level APIs, data has to be transformed before it
can be shipped (“data marshalling”)

Protocols for Client/Server Interaction (“Request/Reply”)

4

Why Middleware?

Distributed computing environments are heterogeneous:

Networks
– ATM, Ethernet, etc. have different protocols

Computer hardware
– data types (integers) can be represented differently

Operating systems
– e.g., TCP module can be part of OS (Unix/Linux) or not

Programming languages
– e.g., different paradigms (functional, OO, etc.)

– e.g., data structures (arrays, records) can be represented
differently

Applications implemented by different developers

5

Middleware Hides Heterogeneity

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

6

Middleware Characteristics

Location transparency

– client/server need not know their location

Sits on top of OS, independent of

– Communication protocols:

use abstract request-reply protocols over UDP, TCP

– Computer hardware:

use external data representation e.g. CORBA CDR

– Operating system:

use e.g. socket abstraction available in most systems

– Programming language:

e.g. CORBA supports Java, C++

7

Middleware Programming Models

Commonly used models:

Distributed objects and remote method invocation
(Java RMI, Corba)

Remote Procedure Call (Web services)

Remote SQL access (JDBC, ODBC)

Distributed transaction processing

CORBA:

provides remote object invocation between

– a client program written in one language and

– a server program written in another language

commonly used with C++

8

Objects

Object = data + methods

– logical and physical encapsulation

– accessed by means of references

– first class citizens, can be passed as arguments

Interaction via interfaces

– define types of arguments and exceptions of methods

m1
m2
m3

Data

implementation

object

of methods

m1
m2
m3

Data

implementation

object

of methods

interface

9

The Object Model

Programs are (logically and physically) partitioned into objects

distributing objects natural and easy

Interfaces

– the only means to access data

make them remote

Actions

– via method invocation

– interaction, chains of invocations

– may lead to exceptions part of interface

Garbage collection

– reduces programming effort, error-free (Java, not C++)

10

The Distributed Object Model: Ideas

Objects are distributed
– client-server relationship at the object level

Extended with
– Remote interfaces
– Remote Method Invocation (RMI)
– Remote object references

invocation invocation
remote

invocation
remote

local
local

local

invocation

invocation
A B

C

D

E

F

11

The Distributed Object Model: Principles

invocation invocation
remote

invocation
remote

local
local

local

invocation

invocation
A B

C

D

E

F

Each process contains objects, some of which can receive
remote invocations, others only local invocations

Objects that can receive remote invocations are called remote objects

The remote interface specifies which methods can be invoked remotely

Objects need to know the remote object reference of an object in another
process in order to invoke its methods How do they get it?

12

Remote Object References

Object references

– used to access objects, which live in processes

– can be passed as arguments and results

– can be stored in variables

Remote object references

– object identifiers in a distributed system

– must be unique in space and time

– error returned if accessing a deleted object

– can allow relocation (see CORBA)

13

Remote Object Reference

Construct unique remote object reference

– IP address, port, interface name

– time of creation, local object number
(new for each object)

Use in the same way as local object references

If used as address

cannot support relocation

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

14

Remote Interfaces

Specify externally accessible methods

– no direct references to variables (no global memory)

– local interface is separate

Parameters

– input, output or both
(no output parameters in Java why?)

– call by value and call by reference

No pointers

– but references

No constructors

– but factory methods

15

A Remote Object and its Interface

CORBA: Interface Definition Language (IDL)
Java RMI: like other interfaces, extends class Remote

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

16

Handling Remote Objects

Exceptions (Java: RemoteException)

– raised in remote invocation

– clients need to handle exceptions

– timeouts in case server crashed or too busy

Garbage collection

– distributed garbage collection may be necessary

– combined local and distributed collector

– cf. Java reference counting
(remote object knows in which processes live proxies,
extra communication to inform server about creation and
delection of proxies)

17

RMI Issues

Local invocations

– executed exactly once

Remote invocations

– via Request-Reply

– may suffer from communication failures!

retransmission of request/reply

message duplication, duplication filtering

no unique semantics…

18

Invocation Semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

19

Maybe Invocation

Remote method

– may execute or not at all, invoker cannot tell

– useful only if failures are rare

Invocation message lost...

– method not executed

Result not received...

– was method executed or not?

Server crash...

– before or after method executed?

– if timeout, result could be received after timeout …

20

At-least-once Invocation

Remote method

– invoker receives result (executed at least once) or
exception (no result, executed one or more times)

– retransmission of request messages

Invocation message retransmitted …

– method may be executed more than once

– arbitrary failure (wrong result possible)

– method must be idempotent (repeated execution has
the same effect as a single execution)

Server crash...

– dealt with by timeouts, exceptions

21

At-most-once Invocation

Remote method

– invoker receives result (executed once) or exception
(no result)

– retransmission of reply and request messages

– receiver keeps history with results (how long?)

– duplicate filtering

Best fault-tolerance ...

– arbitrary failures prevented if method called
at most once

Used by CORBA and Java RMI

22

Transparency of RMI

Should remote method invocation be same as local?
– same syntax, see Java RMI (keyword Remote)
– need to hide:

• data marshalling
• IPC calls
• locating/contacting remote objects

Problems
– different RMI semantics? susceptibility to failures?
– protection against interference in concurrent scenario?

Approaches (Java RMI)
– transparent, but express differences in interfaces
– provide recovery features (IPC over TCP)

23

Remote Method Invocation

5.2 Java RMI

1. Communication between
Distributed Objects

2. RMI

24

Hello World: Remote Interface

import java.rmi.*;

public interface HelloInterface extends Remote {

/*

* Remotely invocable method,

* returns the message of the remote object,

* such as "Hello, world!"

* throws a RemoteException

* if the remote invocation fails

*/

public String say() throws RemoteException;

}

25

Hello World: Remote Object
import java.rmi.*;
import java.rmi.server.*;

public class Hello extends UnicastRemoteObject
implements HelloInterface {

private String message;
/* Constructor for a remote object
* Throws a RemoteException if exporting the object fails
*/

public Hello (String msg) throws RemoteException {
message = msg;

}
/* Implementation of the remotely invocable method
*/

public String say() throws RemoteException {
return message;

}
}

26

Hello World: Server

import java.io.*;
import java.rmi.*;

public class HelloServer{
/*
* Server program for the "Hello, world!" example.
*/
public static void main (String[] args) {

try {
Naming.rebind ("SHello",

new Hello ("Hello, world!"));
System.out.println ("HelloServer is ready.");

} catch (Exception e) {
System.out.println ("HelloServer failed: " + e);

}
}

}

27

Hello World: Client

import java.io.*;
import java.rmi.*;

public class HelloClient{
/*
* Client program for the "Hello, world!" example
*/
public static void main (String[] args) {

try {
HelloInterface hello = (HelloInterface)

Naming.lookup ("//russel.inf.unibz.it/SHello");
System.out.println (hello.say());

} catch (Exception e) {
System.out.println ("HelloClient failed: " + e);

}
}

}

28

Hello World: Compilation

On the server side
– start the RMI registry: rmiregistry &

(Standard port number 1099)

– compile with Java compiler: HelloInterface.java,
Hello.java, HelloServer.java

– compile with RMI compiler: Hello
• command: rmic Hello

produces class Hello_Stub.class

On the client side
– compile HelloClient

• class HelloInterface.class needs to be accessible

29

RMI Architecture

Stubs Skeletons

Remote Reference Layer

Transport Layer

Client ServerApplication

RMI
System

30

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Carries out
Request-reply protocol,
responsible for
semantics,

31

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Translates between local and remote object references,
creates remote object references.
Uses remote object table
(relating remote and local objects references, plus proxies)

32

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

RMI software - between
application level objects
and communication and
remote reference
modules
(according to JRMP v1.1)

33

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Proxy - makes RMI transparent to client. Class implements
remote interface. Marshals requests and unmarshals
results. Forwards request.

34

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Dispatcher - gets request from communication module and
invokes method in skeleton (using methodID in message).

35

object A proxy for B

Remote Communication

modulereference module

client

object B
skeleton

Communication Remote reference

module module

for B’s class
& dispatcher

remote
server

Request

Reply

Implementation of RMI

Skeleton - implements methods in remote interface.
Unmarshals requests and marshals results. Invokes
method in remote object.

36

Communication Modules

Reside in client and server JVM

Carry out Request-Reply jointly

– implement given RMI semantics
(at least once, at most once, exactly once)

Server’s communication module

– selects dispatcher within RMI software

– calls Remote Reference Module to convert remote
object reference to local

37

Remote Reference Module

Creates remote object references and proxies

Translates remote to local references (object table):

– correspondence between remote and
local object references (proxies)

Called by RMI software

– when marshalling/unmarshalling

38

RMI Software Architecture

Proxy
– behaves like local object to client
– forwards requests to remote object

Dispatcher
– receives request
– selects method and passes on request to skeleton

Skeleton
– implements methods in remote interface

• unmarshals data, invokes remote object
• waits for result, marshals it and returns reply

39

Hello Skeleton/1

// Skeleton class generated by rmic, do not edit.
// Contents subject to change without notice.

public final class Hello_Skel
implements java.rmi.server.Skeleton

{
private static final java.rmi.server.Operation[] operations = {

new java.rmi.server.Operation("java.lang.String say()")
};

private static final long interfaceHash = -7469971880086108926L;

public java.rmi.server.Operation[] getOperations() {
return (java.rmi.server.Operation[]) operations.clone();

}

40

Hello Skeleton/2

public void dispatch(java.rmi.Remote obj, java.rmi.server.RemoteCall call, int opnum, long hash)
throws java.lang.Exception

{
if (hash != interfaceHash)

throw new java.rmi.server.SkeletonMismatchException("interface hash mismatch");

Hello server = (Hello) obj;
switch (opnum) {
case 0: // say()
{

call.releaseInputStream();
java.lang.String $result = server.say();
try {

java.io.ObjectOutput out = call.getResultStream(true);
out.writeObject($result);

} catch (java.io.IOException e) {
throw new java.rmi.MarshalException("error marshalling return", e);

}
break;

}
}}}

41

Hello Stub/1

// Stub class generated by rmic, do not edit.
// Contents subject to change without notice.

public final class Hello_Stub
extends java.rmi.server.RemoteStub
implements HelloInterface, java.rmi.Remote

{
private static final java.rmi.server.Operation[] operations = {

new java.rmi.server.Operation("java.lang.String say()")
};

private static final long interfaceHash = -7469971880086108926L;

// constructors
public Hello_Stub() {

super();
}
public Hello_Stub(java.rmi.server.RemoteRef ref) {

super(ref);
}

42

Hello Stub/2

// methods from remote interfaces

// implementation of say()
public java.lang.String say()

throws java.rmi.RemoteException
{

try {
java.rmi.server.RemoteCall call = ref.newCall((java.rmi.server.RemoteObject) this,

operations, 0, interfaceHash);
ref.invoke(call);
java.lang.String $result;
try {

java.io.ObjectInput in = call.getInputStream();
$result = (java.lang.String) in.readObject();

} catch (java.io.IOException e) {
throw new java.rmi.UnmarshalException("error unmarshalling return", e);

} catch (java.lang.ClassNotFoundException e) {
throw new java.rmi.UnmarshalException("error unmarshalling return", e);

} finally {
ref.done(call);

}
return $result;

43

Hello Stub/3

} catch (java.lang.RuntimeException e) {
throw e;

} catch (java.rmi.RemoteException e) {
throw e;

} catch (java.lang.Exception e) {
throw new java.rmi.UnexpectedException("undeclared checked exception", e);

}
}

}

44

Binding and Activation

Binder

– mapping from textual names to remote references

– used by clients as a look-up service (cf Java RMIregistry)

Activation

– objects active (available for running) and passive
(= implementation of methods + marshalled state)

– activation = create new instance of class
+ initialise from stored state

Activator

– records location of passive objects

– starts server processes and activates objects within them
(cf Java RMIdaemon)

45

Classes Supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

46

The Methods of the Naming Class

void rebind (String name, Remote obj)

– This method is used by a server to register the identifier of a
remote object by name

void bind (String name, Remote obj)

– This method can alternatively be used by a server to register a
remote object by name, but if the name is already bound to a
remote object reference an exception is thrown.

void unbind (String name, Remote obj)

– This method removes a binding.
Remote lookup (String name)

– This method is used by clients to look up a remote object by
name. A remote object reference is returned.

String [] list()

– This method returns an array of Strings containing the names
bound in the registry.

47

Exercise: Callback

Write a chat version where

the server has
– a Multicaster object with method send(String)

each client has
– a Display object with method show(String)

both classes and methods are remote.

Clients invoke send and the server invokes show.

Sending a string means showing it on all displays.

How can one implement this?

48

References

In preparing the lectures I have used several sources.

The main ones are the following:

Books:

Coulouris, Dollimore, Kindberg. Distributed Systems – Concepts and
Design (CDK)

Slides:

Marco Aiello, course on Distributed Systems at the Free University of
Bozen-Bolzano

Andrew Tanenbaum, Slides from his website

CDK Website

Marta Kwiatkowska, U Birmingham, slides of course on DS

Ken Baclawski, Northeastern University

