
1

Distributed Systems

4. Programming with Threads

Werner Nutt

2

Processes vs. Threads

Components of distributed systems have to do
different things at the same time (concurrency)

Realization by processes is expensive
processes have separate resources (e.g., memory space)

switching between processes keeps the kernel busy

Threads are cheaper
run in one process (each process has at least one)

share memory space and other resources
(which gives rise to other difficulties)

3

Threads in Java
Threads are first class objects
– instances of the class Thread —

or of a subclass of Thread, created by the programmer

In every program, there is a thread “main”

The class Thread implements the interface Runnable
– Runnable has only one method: run()

Threads can be constructed from implementations of Runnable,
using constructors, like
– new Thread(Runnable target)
– new Thread(Runnable target, String name)

4

Threads in Java (cntd)
Threads have the following methods
– run()
– start()
– getPriority()
– join() (waits for the thread to die)

The class Thread has also static methods, e.g.,
– yield() (lets the current thread pause)
– sleep(long n) (lets the current thread pause

for n milliseconds)

Threads can be daemons and may belong to groups

5

Extending the Class Thread (Example)

class PrimeThread extends Thread {

long minPrime;

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger than minPrime
. . .

}}

Constructor
for PrimeThread

6

Constructing a Thread from a “Runnable”

class PrimeGenerator implements Runnable {
long minPrime;
PrimeGenerator(long minPrime) {

this.minPrime = minPrime;
}

public void run() {
// compute primes larger than minPrime
. . .

}}

Thread primeThread =
new Thread(new PrimeGenerator(1000));

primeThread.start();
Is this better? If so, why?

Constructor
for PrimeGenerator,

fed into
Thread constructor

7

Putting a Thread Asleep

Static methods
Thread.sleep(ms)
Thread.sleep(ms,ns)

Current thread pauses for (approx.) the indicated time

Useful for
– making processor time available for other threads
– ensuring that thread proceeds with a defined rhythm

(“pacing” a thread)

8

Thread Interference
public class Counter {

int c = 0;

public void increment() { c++; }

public void decrement() { c--; }

public int value() { return c; }
}

In reality, increment() and decrement() are complex operations
Two threads A, B may interfere when accessing the same counter
Aim: B must see the effect of A's action (or vice versa)

A “happens before” B

9

Synchronisation
Achieves “happens before” relationship

between threads accessing an object

Principles:
Every object has an intrinsic lock (= “monitor”)
A lock for on object is acquired e.g., by executing
– a synchronised method of that object, or
– a synchronized statement for that object (see below)

Methods can be declared as synchronized
– e.g., public synchronized void updateBalance(..)

for class Account
– acc.updateBalance(...) can only be executed by a thread

if the thread has a lock for acc
– when the method call is completed, the lock is released

10

Example: A Synchronized Counter
public class SynchronizedCounter {

int c = 0;

public synchronized void increment() {
c++;

}

public synchronized void decrement() {
c--;

}

public synchronized int value() {
return c;

}
}

11

Synchronization Wrappers for Collections

Collections (Set, List, Map, SortedSet, and SortedMap)
are typical data structures to be shared by several threads

need for synchronization

Factory methods of class Collections can make a collection object
“thread safe”

List msgQueue =
Collections.synchronizedList(new LinkedList());

Iteration has to be synchronized by a synchronized statement

synchronized(msgQueue) {
Iterator i = msgQueue.iterator();

// must be in synchronized block
while (i.hasNext())

send(i.next());
}

12

Deadlocks

Scenario: two threads T1, T2

T1 has a lock for object O1, T2 has a lock for object O2

T1 needs a lock for O2 to complete work on O1,

T2 needs a lock for O1 to complete work on O2

Deadlock

13

References

In preparing the lectures I have used several sources.
The main one is the following:

Web:
The Java tutorials, Lesson Concurrency
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

