Distributed Systems

4. Programming with Threads

Werner Nutt

Processes vs. Threads

Components of distributed systems have to do
different things at the same time (concurrency)

Realization by processes is expensive
» processes have separate resources (e.g., memory space)
=>» switching between processes keeps the kernel busy

Threads are cheaper
" run in one process (each process has at least one)

» share memory space and other resources
(which gives rise to other difficulties)

Threads in Java

» Threads are first class objects

— instances of the class Thread —
or of a subclass of Thread, created by the programmer

* |n every program, there is a thread “main”

» The class Thread implements the interface Runnable
— Runnable has only one method: run()

» Threads can be constructed from implementations of Runnable,
using constructors, like
— new Thread(Runnable target)

— new Thread(Runnable target, String name)

Threads in Java (cntd)

» Threads have the following methods

—run()
—start()

—getPriority()
— join() (waits for the thread to die)

» The class Thread has also static methods, e.g.,
—yieldQ (lets the current thread pause)

— sleep(long n) (lets the current thread pause
for n milliseconds)

» Threads can be daemons and may belong to groups

Extending the Class Thread (Example)

class PrimeThread extends Thread {

i i Constructor
long minPrime; for PrimeThread

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger than minPrime

1}

Constructing a Thread from a “Runnable”

class PrimeGenerator implements Runnable {
long minPrime;
PrimeGenerator(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger than minPrime

Constructor
+} for PrimeGenerator,
fed into
Thread constructor

Thread primeThread =
new Thread(new PrimeGenerator(1000));

primeThread.start();
Is this better? If so, why?

Putting a Thread Asleep

Static methods
Thread.sleep(ms)
Thread.sleep(mns,ns)

= Current thread pauses for (approx.) the indicated time

= Useful for
— making processor time available for other threads
— ensuring that thread proceeds with a defined rhythm

(“pacing” a thread)

Thread Interference

public class Counter {
int c = 0;

public void increment() { c++; }
public void decrement() { c--; }

public int value() { return c; }

» [Inreality, increment() and decrement() are complex operations
= Two threads A, B may interfere when accessing the same counter
= Aim: B must see the effect of A's action (or vice versa)

= A “happens before” B

Synchronisation

Achieves “happens before” relationship
between threads accessing an object

Principles:
= Every object has an intrinsic lock (= “monitor”)
= Alock for on object is acquired e.g., by executing
— asynchronised method of that object, or
— a synchronized statement for that object (see below)
= Methods can be declared as synchronized

— e.g., public synchronized void updateBalance(..)
for class Account

— acc.updateBalance(. . .) can only be executed by a thread
if the thread has a lock for acc

— when the method call is completed, the lock is released

Example: A Synchronized Counter

public class SynchronizedCounter {
int c = 0;

public synchronized void increment() {
C++;

}

public synchronized void decrement() {
c--;

}

public synchronized int value() {
return c;

}

10

Synchronization Wrappers for Collections

Collections (Set, List, Map, SortedSet, and SortedMap)

are typical data structures to be shared by several threads
=>» need for synchronization

» Factory methods of class Collections can make a collection object
“thread safe”

List msgQueue =
Collections.synchronizedList(new LinkedList());

= |teration has to be synchronized by a synchronized statement

synchronized(msgQueue) {
Iterator 1 = msgQueue.iterator();
// must be iIn synchronized block
while (i.hasNext())
send(i.next());

11

Deadlocks

Scenario: two threads T,, T,

= T, has a lock for object O,, T, has a lock for object O,
= T, needs a lock for O, to complete work on O,

T, needs a lock for O, to complete work on O,
=» Deadlock

12

References

In preparing the lectures | have used several sources.
The main one is the following:

Web:
= The Java tutorials, Lesson Concurrency

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.htmil

13

