
1

Distributed Systems

3. Interprocess Communication

Werner Nutt

2

Interprocess Communication

3.1 Principles

1. Principles
2. APIs for UDP and TCP
3. External Data Representation
4. Client Server Communication
5. Group Communication

3

Middleware

Middleware offers an infrastructure that enables
application processes to communicate with each other
Processes issue requests to the transportation layer

(i.e., the application takes the initiative, not the middleware)

Applications access the middleware via APIs, e.g.,
– creation and manipulation of sockets

Integration into programming languages
– remote procedure call (RPC)
– remote method invocation (RMI)

For higher level APIs, data has to be transformed before it
can be shipped (“data marshalling”)
Protocols for Client/Server Interaction (“Request/Reply”)

4

7

6

4,5

Middleware Layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

ISO/OSI

This

chapter

5

Characteristics of IPC

Message Passing Primitives: Send, Receive

Message = <Destination, Content>

Destination = <Network address, Port>
– Port = destination within a host that identifies

a receiving process
– Ports are uniquely identified by their port number
– Hosts are uniquely identified ... (or not?)

6

Assigned Port Numbers
FTP Data 20
FTP Control 21
SSH 22
Telnet 23
SMTP 25
Domain Name Server 42
Whois 43
HTTP 80
POP3 110
IMAP4 143
BGP 179
HTTPS 443
IMAP4 over SSL 993

Assigned by IANA
(= Internet Assigned

Numbers Authority)

Numbers between 0 and
1023 are “well-known”
ports — opening a port
for such numbers
requires privileges

can be found
- on the Web
- in “/etc/services”
under Linux and MAC/OS

7

Sockets

Characteristics
– Endpoint for inter-process communication
– Message transmission between sockets
– A socket is associated with either UDP or TCP
– Sockets are bound to ports
– One process can use many ports
– Processes don’t share sockets (unless for IP multicast)

Implementations
– originally BSD Unix, but available in Linux, Windows,…
– APIs in programming languages (e.g., java.net)

8

Sockets and Ports

Socket = Internet address + port number
Only one receiver but many senders per port
Advantage: several points of entry to process
Disadvantage: location dependence

message

agreed portany port
socket

socket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

9

Communication Primitives

Send
– send a message to a socket associated to a process
– can be blocking or non-blocking

Receive
– receive a message on a socket
– can be blocking or non-blocking

Broadcast/Multicast
– send to all processes/all processes in a group

10

Receive

Receive is usually blocking
– destination process blocked until message arrives
– most common case

Variations
– conditional receive

(continue until receiving indication
that message arrived or finding out by polling)

– timeout
– selective receive

(wait for message from one of a number of ports)

11

Send in Asynchronous Communication

Characteristics
– non-blocking (process continues after the message sent out)

– buffering needed (at receive end)

– mostly used with blocking receive
– efficient implementation

Problems
– buffer overflow
– error reporting (difficult to match error with message)

Maps closely onto connectionless service

12

Send in Synchronous Communication

Characteristics
– blocking (sender suspended until message received)

– synchronisation point for sender & receiver
– easier to understand

Problems
– failure and indefinite delay causes indefinite blocking

(use timeout)

– multicasting/broadcasting not supported
– implementation more complex

Maps closely onto connection-oriented service

13

Interprocess Communication

3.2 APIs for UDP and TCP

1. Principles
2. APIs for UDP and TCP
3. External Data Representation
4. Client Server Communication
5. Group Communication

14

Java API for Internet Addresses

Class InetAddress
– uses DNS (Domain Name System)

InetAddress serverAdd =
InetAddress.getByName(“www.inf.unibz.it”);

– throws UnknownHostException
– encapsulates details of IP address

(4 bytes for IPv4 and 16 bytes for IPv6)

15

UDP Packet Structure

UDP = User Datagram Protocol

16-bit destination
port number

16-bit source
port number
16-bit UDP

packet length
16-bit UDP
checksum

Payload

16

Java API for UDP
Simple send/receive
– with messages possibly lost/out of order

Class DatagramPacket
– packets may be transmitted between sockets
– packets are truncated if too long
– provides getData, getPort, getAddress,
getLength

Destination
Port

Destination
IP address

Payload
length

Payload (= array of bytes)

17

Java API for UDP Sockets

Class DatagramSocket
socket constructor
– bound to free port if no arg
– arguments InetAddress, Port
send a DatagramPacket, non-blocking
receive DatagramPacket, blocking
setSoTimeout (receive blocks for time T and throw

InterruptedIOException)
close DatagramSocket
throws SocketException if port unknown or in use
connect and disconnect (!!??)
setReceiveBufferSize and setSendBufferSize

18

In the Following Example …

UDP Client
– sends a message and gets a reply

UDP Server
– repeatedly receives a request and sends it back to the

client

See website of textbook for Java code (www.cdk4.net)

message

Port 6789

client server

19

UDP Client Example
public class UDPClient{
public static void main(String args[]){
// args give message contents and server hostname

DatagramSocket aSocket = null;
try { aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new

DatagramPacket(m,args[0].length(),aHost,serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply);

} catch (SocketException e){System.out.println("Socket: " + e.getMessage());
} catch (IOException e){System.out.println("IO: " + e.getMessage());}
finally {if (aSocket != null) aSocket.close(); }

}}

20

UDP Server Example
public class UDPServer{

public static void main(String args[]){
DatagramSocket aSocket = null;
try {aSocket = new DatagramSocket(6789);

byte[] buffer = new byte[1000];
while(true) {
DatagramPacket request = new DatagramPacket(buffer,

buffer.length);
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);
}

} catch (SocketException e){System.out.println("Socket: " +
e.getMessage());

} catch (IOException e) {System.out.println("IO: " + e.getMessage());}
} finally {if(aSocket != null) aSocket.close();}

}

21

Socket Primitives for TCP/IP

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningSystem Calls

Sockets appeared first in Berkeley UNIX as an interface to the
transport layer

22

Life Cycle of Berkeley TCP Sockets

23

Java API for TCP

Data stream abstraction
– enables reliable transfer (send can be blocking)

– marshaling/unmarshaling of data
– access to TCP parameters:

ReceiveBufferSize, SendBufferSize

Classes Socket and ServerSocket
– Socket asks for connection
– ServerSocket listens and returns Socket

when contacted

Port numbers
– explicit for ServerSocket, transparent for Socket

24

Java API for TCP

Class ServerSocket:

bind to a SocketAddress if unbound

accept: listen and return a Socket
when a connection request arrives (blocking)

close

25

Java API for TCP
Class Socket:
connect to SocketAddress
getRemoteSocketAddress since that was chosen by

the TCP system on the other side
getInputStream, getOutputStream
– use them for reading and writing
– which is/may be blocking
DataInputStream, DataOutputStream:
– wrapper classes for streams
– have methods for marshaling/ unmarshaling
isConnected
close

26

TCP Client Example
public class TCPClient {

public static void main (String args[]) {
// arguments supply message and hostname of destination

Socket s = null;
try{ int serverPort = 7896;

s = new Socket(args[1], serverPort);
DataInputStream in = new DataInputStream(s.getInputStream());
DataOutputStream out = new DataOutputStream(

s.getOutputStream());
out.writeUTF(args[0]); // UTF is a string encoding
String data = in.readUTF();
System.out.println("Received: "+ data) ;
s.close();

} catch (UnknownHostException e){
System.out.println("Sock: "+e.getMessage());

} catch (EOFException e){System.out.println("EOF: "+e.getMessage());
} catch (IOException e){System.out.println("IO: "+e.getMessage());}
} finally {if(s!=null} try {s.close();} catch (IOException e)….}

}

27

TCP Server Example
public class TCPServer {

public static void main (String args[]) {
try{

int serverPort = 7896;
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSocket.accept();
Connection c = new Connection(clientSocket);

}
} catch(IOException e) {System.out.println("Listen: " +

e.getMessage());}
}

}

// this figure continues on the next slide

28

Example Server (cntd.)
class Connection extends Thread {

DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream(clientSocket.getInputStream());
out = new DataOutputStream(clientSocket.getOutputStream());
this.start();

} catch(IOException e) {System.out.println("Connection: "+e.getMessage());}
}
public void run(){

try { // an echo server
String data = in.readUTF();
out.writeUTF(data);

} catch(EOFException e) {System.out.println("EOF: "+e.getMessage());
} catch(IOException e) {System.out.println("IO:s a"+e.getMessage());}

} finally {try {clientSocket.close();}catch (IOException e)…..}
}

29

Interprocess Communication

3.3 External Data Representation

1. Principles
2. APIs for UDP and TCP
3. External Data Representation
4. Client Server Communication
5. Group Communication

30

External Data Representation

The transport layer is only concerned with the (reliable?)
transmission of sequences of bytes …
… but what about data types and data structures?

Problems:
Integers: 1'complement vs. 2'complement
Real/Float: IEEE 754 standard vs. IBM Mainframes
Byte order in words: big-endianness vs. little-endianness
Nested strucs …

31

Little and Big Endians

Common file formats and their endian order are as follows:

Little Endan
– BMP bitmaps (Windows and OS/2 Bitmaps)
– GIF
– QTM (Quicktime Movies)
– Microsoft RTF (Rich Text Format)

Big Endian
– Adobe Photoshop
– JPEG
– TIFF (actually both, endian identifier encoded into file)
– MacPaint

32

Marshalling and Unmarshalling

Marshalling: Encode data items so that they can be written
onto a stream
Unmarshalling: Read an encoding from a stream and
reconstruct the original items

Needed for transmission and storing data in a file

Examples
CORBA: CDR (= Common Data Representation) for
primitive and structured data types that occur
in remote method invocations
Java: Serialization (applicable to all classes that
implement the interface Serializable, uses reflection

next chapter)

33

Example: Marshalling in CORBA

struct Person{
string name;
string place;
long year

};

IDL declaration of a Person struct

34

Marshalling in CORBA (cntd.)

Primitive Types
– short, long, string, float, double, …
– endian order

• determined by sender
• flagged in each message

Constructed Types
– marshalling operations are generated from IDL types

by CORBA interface compiler

35

Marshalling in CORBA (cntd.)

The flattened form represents a Person

struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

Why can one reconstruct the original struct from this byte sequence?

36

Example: Serialization in Java

public class Person implements Serializable {
private String name;
private String place;
private Int year;
public Person(String aName, String aPlace, int aYear) {

name = aName;
place = aPlace;
year = aYear;

}
// … methods for accessing instance variables …

}

Stating that a class implements “Serializable” makes its instances serializable

Serialization/deserialization process has no knowledge of object types,
uses “reflection”

37

Sketch: Serialization in Java

h0 is a class handle and h1 is an instance handle (i.e., can be used by other
serialized objects)

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation
class name, version number

number, type and name
of instance variables

values of instance variables

Wrapper classes: ObjectOutputStream,
ObjectInputStream

Methods: writeObject(Object), readObject()

Why does CORBA not mention types and classes, but Java does?

Person p = new Person("Smith", "London", 1934);

38

Remote Object References

Remote objects must be uniquely identifiable within a DS
to be invoked

(The figure sketches one approach)

Why is there time? Is the port number not sufficient?
How well does this scale if objects can migrate between processes?

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

39

Interprocess Communication

3.4 Client Server Communication

1. Principles
2. APIs for UDP and TCP
3. External Data Representation
4. Client Server Communication
5. Group Communication

40

Communication Types

Asynchronous: sender continues after submission

Synchronous: sender is blocked until
– message is stored at receiver’s host
– message is received
– reply is received

41

Client Server Communication

Typical example of interprocess communication
Based on a request-reply protocol
Most RPC (= Remote Procedure Call) and
RMI (= Remote Method Invocation) systems are
supported by a similar protocol at the message level

Should this be synchronous communication or not?

Our toy protocol consists of three primitive operations
doOperation
getRequest
sendReply

42

Client Server Communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

43

Client Server Communication
public byte[] doOperation (RemoteObjectRef o, int methodId,

byte[] arguments)
– sends a request message to the remote object

and returns the reply
– arguments specify the remote object, the method to be invoked

and the arguments of that method

public byte[] getRequest ();
– acquires a client request via the server port

public void sendReply (byte[] reply, InetAddress clientHost,
int clientPort);

– sends the reply message reply to the client
at its Internet address and port

Client Side

Server Side

44

Request-reply Message Structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Why is there a requestId ?

45

Request-reply: Questions

Which transport protocol would be more suitable,
UDP or TCP?

Why?

How are request-reply protocols usually implemented?

46

Datagram-based RRP

What can go wrong?

What are the remedies?

47

Interprocess Communication

3.5 Group Communication

1. Principles
2. APIs for UDP and TCP
3. External Data Representation
4. Client Server Communication
5. Group Communication

48

Group Communication

Multicast transmission
a message sent to a specified group of recipients

(as opposed to unicast and broadcast)

Examples
Fault tolerance based on replicated services
– requests go to all servers

Spontaneous networking
– all nodes of the network receive messages

Better performance through replicated data
– the updated data goes to all storing the data

Event notification
Requirements for delivery guarantees differ

49

Two Implementations of Multicast

50

IP Multicast

Multicast groups are specified by an IP address of class D
and a port number (multicast address)
Available only for datagrams (UDP)
– Time To Live (TTL) specifies range of the multicast

51

Multicast Protocols

Internet Group Management Protocol (IGMP)
– for interaction between host and nearest router
– allows hosts to join and leave a multicast address

dynamically
– routers query hosts for their group membership

(soft state registration: expires if not confirmed)
Routing within AS (= Autonomous Systems):
– for each group, construct a tree connecting the routers

involved in the group
– approaches based on distance vector (MDVRP) and

shortest path (MOSPF) technique
Routing across AS
– MDVRP and multicast version of BGP (BGMP)

52

Multicast Routing

Scenario:
Multicast hosts,
their attached routers,
and other routers

Approaches:
• single shared tree
• one source-based
tree for each router

53

Tunneling

Crux: not all routers support multicast
Solution: multicast-enabled routers form a virtual network

(“overlay network”)

Nodes communicate by “tunneling”
– packets to multicast IP addresses are sent as payload

to the next multicast-capable router

54

Multicast in Java
import java.net.*;
import java.io.*;
public class MulticastPeer{

public static void main(String args[]){
// args give message contents &
// destination multicast group (e.g. "228.5.6.7")

MulticastSocket s = null;
try {

InetAddress group = InetAddress.getByName(args[0]);
s = new MulticastSocket(6789);

s.setTimeToLive(255); //TTL of messages
s.joinGroup(group);

byte [] m = args[0].getBytes();
DatagramPacket messageOut =

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);

55

Multicast in Java (cntd.)
// get messages from others in group
byte[] buffer = new byte[1000];

for(int i=0; i< 3; i++) {
DatagramPacket messageIn =

new DatagramPacket(buffer, buffer.length);
s.receive(messageIn);
System.out.println("Received:" +
new String(messageIn.getData()));

}
s.leaveGroup(group);
}catch (SocketException e)
{System.out.println("Socket: " + e.getMessage());

}catch (IOException e)
{System.out.println("IO: " + e.getMessage());}

}finally {if(s != null) s.close();}
}

}

56

Exercise

Would multicast be an option for implementing a
chat system?
Why is there no TCP version of multicast?
Multicast messages can be read by everyone who joins a
group. Should one enhance IP Multicast so that messages
can only be received by authorised users?
What guarantees can IP Multicast give regarding
– reliability
– ordering of messages?

57

References
In preparing the lectures I have used several sources.
The main ones are the following:

Books:
Coulouris, Dollimore, Kindberg. Distributed Systems – Concepts and
Design (CDK)

Slides:
Marco Aiello, course on Distributed Systems at the Free University of
Bozen-Bolzano
Andrew Tanenbaum, Slides from his website
CDK Website
Marta Kwiatkowska, U Birmingham, slides of course on DS

