
1

Distributed Systems

Client-Server Communication: Exercises

Werner Nutt

2

Request-Reply Protocols

3

Communication Types

Asynchronous: sender continues after submission

Synchronous: sender is blocked until
– message is stored at receiver’s host
– message is received
– reply is received

4

Request/Reply Protocols
Basically all client/server communication follows the pattern
of a request/reply protocol:

– the client sends a request message
– the server executes the requested operation
– the server responds with a reply message

1. Give an example of a request/reply protocol in the real
world.

2. Discuss the pros and cons of synchronous and
asynchronous communication for a request/reply
protocol. Under which conditions is synchronous
communication preferrable? When asynchronous
communication?

5

Request-reply Message Structure

Imagine a request-reply protocol where a request is an
invocation of a method of a remote object.

Suppose requests have the following format:

messageType: 0

requestID

objectReference

methodId

arguments

bool (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

6

Request-reply Message Structure (cntd)

3. Under which circumstances is a requestID needed?
(Hint 1: remember that messages are sent over
networks;
Hint 2: remember Question 2)

4. What elements should a reply message have?

7

Request-reply at the Transport Level

5. Which transport protocol would be more suitable to
implement a request reply protocol, UDP or TCP?

6. Does the answer depend on additional circumstances?

7. Over which transport-level protocol is the request-reply
protocol implemented that you mentioned as answer to
Question 1?

8

Datagram-based RRP

Suppose a Request-Reply Protocol is implemented using
UDP.

8. What can go wrong in a message exchange?
Describe 3 possible problems.
(Think of message loss and its consequences.)

9. For each problem above, describe a (simple) refinement
of the basic request-reply protocol that overcomes it.

9

Invocation Semantics

For request/reply protocols, one distinguishes between three
semantics that are distinguished by the guarantees given for
the execution of the server’s operation:

Maybe Semantics: the server may execute the request
once, several times, or not at all
At-least-once Semantics: the server executes the request
at least once, but may execute it more often, until the
client receives an answer
At-most-once Semantics: for each request, the server
executes the operation at most once; the invoking
application receives the result or an exception

10

Invocation Semantics (cntd)

11.Explain: for which of the three semantics is it necessary
that the client transmits requests more than once?

12.Explain: for which of the three semantics is it necessary
that the server remembers the requests it has answered?

13.For each of the three semantics, explain what the server
should do when it receives a request.
Hint: Find out, whether the server should remember
something, and if so, what.

11

Idempotent Operations

14.Suppose a server receives the same client request more
than once. How should it react the second time?

An operation of the server is called “idempotent” if it leads to
the same result, independent of how many times it is
executed.

15.When running a request/reply protocol, does it make a
difference whether server operations are idempotent or
not? Does this depend on the invocation semantics?
Explain your answer.

12

Request-Reply with Acknowledgements
In the Request-Reply-Acknowledgement (RRA) protocol the
client acknowledges the server’s reply messages, and the
acknowledgement message contains the ID in the reply
message being acknowledged.

16.For which of the three invocation semantics does RRA
allow for an optimisation? Is the optimisation on the client
or on the server side?

Describe how the implementation of client and/or server
changes for this semantics when moving from RR to
RRA.

13

Request-Reply with Piggy-Backed
Acknowledgements

17.Design a variant of the RRA protocol in which the
acknowledgement is piggy-backed on, that is, transmitted
in the same message as, the next request where
appropriate, and otherwise sent as a separate message.
Which changes are necessary on the server and on the
client side?

