
Data Structures and Algorithms Fall-Winter 2018/19

Assignment 1 Julien Corman, Werner Nutt
Flavio Vella

Array Utility Class, Euclidean Algorithm

Instructions: Your assignment should represent your own effort. However, you are not
expected to work alone. It is fine to discuss the exercises and try to find solutions together,
but each student shall write down and submit his/her solutions separately. It is good
academic standard to acknowledge collaborators, so if you worked together with other
students, please list their names.

1. Implementation of the basic operations of the class ArrayUtility

Implement in Java the class ArrayUtility, which offers basic operations over one-
dimensional and two-dimensional arrays. All methods must be implemented as class
methods (i.e., static methods). The signature of the methods in the ArrayUtility
class are the following:

1. public static int findMax(int[] A, int i, int j): returns the
maximum value occurring in array A between position i (included) and j (excluded).

2. public static int findMinPos(int[] A, int i, int j): returns
the position of the minimal number v in array A between position i (included) and j
(excluded). If v is repeated, returns the position of any of its occurrences.

3. public static void swap(int[] A, int i, int j): swaps the el-
ements in position i and j in array A.

4. public static void shiftRight(int[] A,int i,int j): shifts
to the right all elements of array A, starting from position i and until position j
(i.e., moves the element in position k to position k + 1 for all i ≤ k < j, and
leaves position i unchanged).

5. public static int[][] createRandomMatrix(int rows, int
cols, int min, int max): creates and returns a two-dimensional array
with rows rows and cols columns of random elements. Each element has a value
between min (included) and max (included). Use the Math.random() method
of Java.

6. public static int findInArray(int[] A, int q): returns the po-
sition of number q in array A. Returns −1 if q is not present in A. If q is repeated,
returns the position of any of its occurrences.

7. public static int findInSortedArrary(int[] A, int q):
behaves like findInArray(int[] A, int q).

The method assumes that the array A is sorted (in ascending order). It need not be
correct if A is not sorted. Exploit the fact that the array is sorted to find an efficient
algorithm (remember the Google interview questions!).



8. public static int findFirstInSortedArrary(int[] A, int q):
returns the position of the first occurrence of number q in array A. Returns −1 if q
is not present in A.

As before, the method assumes that A is sorted (in ascending order), and need not
be correct if A is not sorted. Again, exploit the fact that the array is sorted to find
an efficient algorithm.

For methods 7 and 8, write down an explanation (in English) of your solution to the
problem.

(Weight: 60% of this CW)

2. Euclidean Algorithm

The algorithm gcd(int a, int b) is a simple version of the Euclidean Algorithm,
which computes the greatest common divisor of two positive integers a and b:

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a := a - b;

else
b := b - a;

}
return a;

}

Write down proofs for the following statements:

1. The algorithm gcd(int a, int b) terminates for all positive integers a and b.

2. The algorithm gcd(int a, int b) is correct, i. e., always computes the greatest
common divisor of a and b.

(Weight: 40% of this CW)

Deliverables. For Question 1, submit two copies of your code:

• one via Codeboard (instructions are available here),

• one via the OLE submission page of your lab (together with the other deliverables).

For Question 1 (methods 7 and 8), hand in a PDF containing your explanations.
For Question 2, hand in a PDF containing your proofs.

Combine all deliverables into one zip file, which you submit via the OLE submission page
of your lab. Please include name, student ID and email address in your submission.

Submission until Thursday, 18 October 2018, 23:55, to Codeboard and the OLE submis-
sion page of:

Lab A / Lab B

https://
https://ole.unibz.it/mod/assign/view.php?id=39729
https://ole.unibz.it/mod/assign/view.php?id=39740

