Chapter 5 Dvnamic Data Structures

Data Structures and Algorithms

Chapter 5

Dynamic Data Structures and
Abstract Data Types

Werner Nutt

Data Structures and Algorithms 1

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 3

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 4

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 5

Chapter 5 Dvnamic Data Structures

Records

* Records are used to group a number of (different) fields

* A person record may group
name,
age,
city,
nationality,
ssn

* Grouping of fields is a basic and
often used technique

It is available in all programming languages

Data Structures and Algorithms 6

Chapter 5 Dvnamic Data Structures

Records in Java

In Java a class is used to group fields:

class Rec {
int a; int b;

};

public class Dummy {
static Rec r;

public static void main(String args([]) {
r = new Rec();
r.a = 15; r.b = 8;
System.out.print (*Adding a and b yields V) ;
System.out.println(r.a + r.b);

}

Data Structures and Algorithms 7

Chapter 5 Dvnamic Data Structures

Records in C

In C a struct is used to group fields:

struct rec {
int a;
int b;

};

struct rec r;

int main() {
r.a=5;, r.bp = 8;
printf (“The sum of a and b is %d\n”, r.a + r.b);

}

// gcec -o dummy dummy.c ; ./dummy

Data Structures and Algorithms 8

Chapter 5 Dvnamic Data Structures

Recursive Data Structures

The counterpart of recursive functions are
recursively defined data structures

* Example: list of integers

list=| Integer
integer, list
* |n Java: In C:
class List/{ struct list{
int value; int value;
List tail; struct list *tail;

| |
Data Structures and Algorithms 9

Recursive Data Structures/2

The storage space of recursive data structures is not
Known in advance.

— It is determined by the number of
elements that will be stored in the list

— This is only known during runtime
(program execution)

— The list can grow and shrink
during program execution

10

Chapter 5 Dvnamic Data Structures

Recursive Data Structures/3

There must be mechanisms

* to constrain the initial storage space
of recursive data structures
(it is potentially infinite)

* to grow and shrink the storage space
of a recursive data structures
during program execution

Data Structures and Algorithms 11

Chapter 5 Dvnamic Data Structures

Pointers

* A common technique is to allocate the storage space
(memory) dynamically

* That means the storage space is allocated when the
program executes

* The compiler only reserves space for an address to
these dynamic parts

* These addresses are called pointers

Data Structures and Algorithms 12

Pointers/2

* Integer |

* pointer p to an
integer (595)

* record r with
integer
components a (17)
and b (24)

* pointer s
that points to r

Address Variable Memory

1af782
1af783
1af784
1af785
1af786
1af787
1af788
1af789
1af78a

p
.

23

1af789

17

24

1af784

55

13

Pointers in C

1

. To follow (chase, dereference) a pointer variable,

we write *p
*p = 12

. To get the address of a variable i, we write &i

p = &1

. To allocate memory, we use malloc(sizeof(Type)),

which returns an address in the memory heap
p = malloc(sizeof (1nt))

. To free storage space pointed to by a pointer p we

use free
free (p)

14

______Chapter5
Pointers in C/2

* To declare a pointer to type T we write T*
—1int* p
* Note that * is used for two purposes:
— Declaring a pointer variable
int* p
— Following a pointer
*p = 15
* In other languages these are syntactically
different

15

Chapter 5 Dvnamic Data Structures

Pointers in C/3

* inti Address Variable Memory
| =23 1af782 i 23

* int*p 1af783 p 1af789
p = malloc(sizeof(int)) 1af784 r 17
P =99 1af785 24

* structrecr 1af786 S 1af784
ra=1s 1af787
b =24 1af788

* struct rec” s; 1af789 55
S =& 1af78a

Data Structures and Algorithms

16

Pointers in C/4

Alternative notation:

Address Variable Memory
1af782 i 23
1af783 P 1af789
1af784 r 17
1af785 24
1af786 S 1af784
1af787

1af788

1af789 55
1af78a

Variable
i

P
.

Memory

23

17

24

A

55

17

Pointers/3

* Pointers are only one mechanism
to implement recursive data structures

* Programmers need not be aware of their existence
The storage space can be managed automatically

* In C the storage space has to be managed explicitly
* In Java
— an object is implemented as a pointer

— creation of objects (new)
automatically allocates storage space.

— accessing an object will automatically follow the pointer
— deallocation is done automatically (garbage collection)

18

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 19

Chapter 5 Dvnamic Data Structures

Lists

* Alist of integers:

head 88‘

Y
A\ 4
A\ 4

52 —+—11] |12 |-

* Corresponding declaration in Java:

class Node {
int wval;
Node next;

}

class List {
Node head;

}

* Accessing afield: p.a

Data Structures and Algorithms 20

Chapter 5

Lists/3

Dvnamic Data Structures

* Populating the list with integers (Java):

| — head| {88 52/ 11| ——12
1l = new List(); P = p.next;
1.head = new Node() ; P-Valt=_11; Node ()
1.head.val = 88; p.next = new Node();
l.head.next = new Node() ; p = p.next;
p = 1l.head.next; P.Valtz—lz;ll-
p.val = 52; p.next = null;
p.next = new Node() ;

Data Structures and Algorithms 21

Chapter 5 Dvnamic Data Structures

List Traversal

* Print all elements of a list (Java):

\4

\4

v

| —{head 52 —— 11| — 12 -

88

void print () {
Node node = root;
while (node != null) {
System.out.printf ("%d,", node.val);
node = node.next;

}
System. out.printf ("\n") ;

Data Structures and Algorithms 22

List Traversal: Recursive Version

* Print all elements of a list (Java):

| — head =88‘ =52‘ N 11‘ =12‘ 1

void printRec () {
printRec (head) ;

}

void printRec (Node node) {
if (node == null) {
System.out.printf ("\n") ;
} else {
System.out.printf ("%d,", node.val);
printRec (node.next) ;}

Chapter 5 Dvnamic Data Structures

Length of a List: lteration

* Count the number of nodes in the list (Java):

| —{head 52 |—{11] 12 -

\4

88

\4

public int length() {
Node node = head;
int length = 0;
while (node !'= null) {
length++;
node = node.next;

}

return length;

Data Structures and Algorithms 24

Length of a List: Recursion

* Count the number of nodes in the list (Java):

| —

' head

188

152 —

—

1

12 -

}

public int length () {

return length (root) ;

} else {
return 1 + length (node.next);

}

int length (Node node) {
i1f (node
return O;

null) {

Length of a List: Tail Recursion

* Count the number of nodes in the list (Java):

| —

' head

using an accumulator argument (lengthSoFar)

\4

88

\4

52 —

—

1

12 -

public int length() {
return length(root, 0);}

i1f (node == null) {
return lengthSoFar;
} else {

int length (Node node, int lengthSoFar) {

return length(node.next, lengthSoFar+l);

Chapter 5 Dvnamic Data Structures

Get Number at Position i

* Recursive version

public int get(int i) {
// get value at position i
// suppose that i >= 0, and head has position 0
Node p = head;
while (p !'= null && i > 0) {
P = p.next;
i--;

}
if (p == null) {

throw new RuntimeException("Pos not in list");
} else {

return p.val;

}

Data Structures and Algorithms 27

Chapter 5 Dvnamic Data Structures

Get Number at Position i/2

* |terative version

public int get(int 1) {
// get value at position i
// suppose that i >= 0, and head has position 0
Node p = head;
while (p !'= null && i > 0) {
P = p.next;
i-=;
}
if (p == null) {
throw new RuntimeException("Pos not in 1list");
} else {
return p.val;

}

Data Structures and Algorithms

________________Chapter5

List Insertion at Head Position
* Add a node with a give value (e.g., 43) as the head:

| — head —{88 —— 12 |-

public void addAsHead(int v) {
Node node = new Node (V) ;
node.next = head;
head = node;

| —*head———+43‘ =88‘————»12‘——ﬂ

29

Chapter 5 Dvnamic Data Structures

List Insertion at Tail Position
* Insert 43 at end (Java):

A4

| — head =88‘ 12‘ —

public void addAsTail (int v) {
if (head == null) {
head = new Node (V) ;
} else {
Node p = head;
while (p.next !'= null) {
p = p.next;

}

p.next

}

new Node (v) ;

Data Structures and Algorithms 30

Chapter 5 Dvnamic Data Structures

Insert Number at Position i

* recursive version

public void insertNumberAtRec (int v, int i) {
if (1 == 0){
Node n = new Node (V) ;
n.next = head;
head = n;
} else {
insertNumberAfterRec (v , head, 1i);

}

Data Structures and Algorithms

Insert Number at Position i/2

* recursive version, continued

void insertNumberAfterRec (int v, Node n, int 1) {
if (n == null) {
throw new RuntimeException("Pos not in list");
} else 1if (i == 0) {
Node newNode = new Node (V) ;
newNode.next = n.next;
n.next = newNode;

} else {
insertNumberAfterRec (v, n.next, i-1);

}

________________Chapter5

Copying a list

Returns a list with new nodes that is a copy of the original list

public List copy() {
List copy = new List();
return copy (head, copy);

}

List copy (Node node, List copy) {
if (node == null) {
return copy;
} else {
List copyNext = copy(node.next, copy):
copyNext.addAsHead (node.val) ;
return copyNext;

Node Removal (lterative)

* Remove (first) node with value v from a non-empty list:

void removeFirst (int v) {
if (head == null) {
return;
} else if (head.val == v) {
head = head.next;

} else {
Node p = head;
while (p.next !'= null && p.next.val != v) {

P = p.next;

}
if (p.next !'= null) ({
p.next = p.next.next;

Chapter 5 Dvnamic Data Structures

Lists

Cost of operations:

— insert at beginning: O(1)

— insert at end: O(n)

— check isEmpty: O(1)

— delete first node of list: O(1)
— search: O(n)

— delete: O(n)

— print: O(n)

Data Structures and Algorithms 35

Suggested Exercises

* Implement a linked list with the following functionalities:
ISEmpty, insertFirst, insertLast, search, deleteFirst,
delete, print

* As before, with a recursive version of:
iInsertLast, search, delete, print

— are recursive versions simpler?

* Implement an efficient version of print which prints the
list in reverse order

36

Chapter 5 Dvnamic Data Structures

Variants of Linked Lists

* Linked lists with explicit head/tail

* Doubly linked lists

Data Structures and Algorithms

37

Chapter 5 Dvnamic Data Structures

List with Explicit Head/Tail

* Instead of a single head we can have a head and tail.

head tail

N\ N\

L > ¢ | > o |e > (/)

\

(Rome) (Seatie) (oromo)

Data Structures and Algorithms 38

Doubly Linked Lists

* To be able to quickly navigate back and forth in a list we

use doubly linked lists

header

LN

a5

* A node of a doubly linked list has a next and a prev link

|

{5 5

\

trailer

i

h{

e

R

\

\

(Baltimore) (New York) (Providence)

header

header

5

JEA s MR WS

G Goon) o) |

Chapter 5

secondtolast

1

o

 [{NEA « BB

secondtolast

L1

header

\.

last trailer

‘*-'u:ail_e_r___.-—'j

b

15 B BSD

40

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 41

Abstract Data Types (ADTs)

An ADT is a mathematically specified entity
that defines a set of its instances with:

— an interface — a collection of signatures of operations
that can be invoked on an instance.

— a set of conditions (preconditions and post-conditions),
possibly formulated as axioms,
that define the semantics of the operations
(i.e., what the operations do to instances of the ADT,
but not how)

42

Chapter 5 Dvnamic Data Structures

Examples of ADTs

We discuss a number of popular ADTs:
— Stacks
— Queues
— Priority Queues
— Ordered Lists
— Dictionaries (realized by Trees, next chapter)

They illustrate the use of lists and arrays

Data Structures and Algorithms 43

Why ADTs?

* ADTs allow one to break tasks into pieces
that can be worked on independently — without
compromising correctness.

They serve as specifications of requirements for the
building blocks of solutions to algorithmic problems

* ADTs encapsulate data structures and algorithms that
implement them.

44

Why ADTs?/2

* ADTs provide a language to talk
on a higher level of abstraction

* ADTs allow one to separate the check of correctness
and the performance analysis:

1.Design the algorithm using an ADT
2.Count how often different ADT operations are used
3.Choose suitable implementations of ADT operations

ADT = Instance variables + procedures
(Class = Instance variables + methods)

45

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 46

Stacks

* |n a stack, insertions and deletions follow the

last-in-first-out (LIFO) principle.

* Thus, the element that has been in the queue for the

shortest time is processed first
— Example: OS stack, ...
* Solution: Elements are inserted at the beginning (push)

and removed from the beginning (pop)

Begipning

Stack

@ ©

47

Stacks/2

We assume
* there is a class Element
* we want to store objects of type Element in our stacks

We require that stacks support the operations:

* construction of a stack
(possibly with a parameter for the maximal size)

* checking whether a stack is empty
* asking for the current size of the stack
* pushing an element onto the stack
* popping an element from the stack

48

Chapter 5 Dvnamic Data Structures

Stacks/3

Appropriate data structure:
— Linked list, one head: good
— Array: fastest, limited in size
— Doubly linked list: unnecessary

Data Structures and Algorithms 49

An Array Implementation

* Create a stack using an array
* A maximum size N is specified

* The stack consists of an N-element array S and
an integer variable count:

— count: index of the front element (head)

— count represents the position where to insert next
element, and the number of elements in the stack

50

Array Implementation of Stacks

class Stack({ 1

int maxSize, count; Java-style
Element[] S; . .
Implementation
Stack (int maxSize) { of stacks

this.maxSize = maxSize;
S = new Element[maxSize];
count = 0; }

int size () {..}

boolean isEmpty () {..}

void push (Element x){ .. }

Element pop(){ .. }

}

Array Implementation of Stacks/2

int size () J tv
return count) slizkeijlle _
— Pe—— iImplementation
oolean isEm
TERIPEY of stacks:
return (count == 0)
arrays start at
Element pop () position 0
if isEmpty() then Error
X = S[count-1]
count--;

return x

void push (Element x)
i1f count==maxSize then Error;
S[count] = x;
count++;

52

A Linked-list Implementation

* Alist of integers:

12 +

A\ 4

52 —— 11|

\4

| — head+— 88‘

* Insert from the top of the list

void push (Element x):

node p = new node();
p.val = x;

p.next = head;

head = p;

* Constant-time operation!

53

A Linked-list Implementation/2

* Alist of integers:

A\ 4

| —{head] g8 | {52 —+—{11] 12 -

* Extract from the top of the list

Element pop():

X = head.val;
head = head.next;
return x;

* Constant-time operation!

54

Queues

* In a queue insertions and deletions follow the
first-in-first-out (FIFO) principle

* Thus, the element that has been in the queue for the
longest time is processed first
— Example: Printer queue, ...

* Solution: Elements are inserted at the end (enqueue)
and removed from the beginning (dequeue).

Begipning Queue End

Queues/2

We assume
* there is a class Element
* we want to store objects of type Element in our queues

We require that queues support the operations:

* construction of a queue
(possibly with a parameter for the maximal size)

* checking whether a queue is empty

* asking for the current size of the queue
* enqgueuing an element into the queue

* dequeuing an element from the queue

56

Chapter 5 Dvnamic Data Structures

Queues/3

Appropriate data structure:

— Linked list, head: inefficient insertions
— Linked list, head/tail: good

— Array: fastest, limited in size

— Doubly linked list: unnecessary

Data Structures and Algorithms 57

An Array Implementation

* Create a queue using an array in a circular fashion
* A maximum size maxSize is specified

* The queue consists of an N-element array Q and two
iInteger variables:

— f, index of the front element (head, for dequeue)

— r, index of the element after the last one
(rear, for enqueuing)

ol | N NP]

58

Chapter 5 Dvnamic Data Structures

An Array Implementation/2

“Wrapped around” configuration:

of | NooNEL T PPT

0 1 2 r M-

What does “f == r’ mean?

Data Structures and Algorithms 59

An Array Implementation/3

In the array implementation of stacks

* we needed an array of size N
to realize a stack of maximal size N

* we could model the empty stack with “count == 0°

Let's model a queue with an array of size N and “pointers” 1, r:

* if fis fixed, then r can have N different values,
one of them models “the queue is empty”

* hence, we can only store N-7 elements,
if we implement our queue with an array of length N

60

Array Implementation of Queues/3

class Queue({ i

]J;:.:l::th N,tf, r; Java-style
ement[] Q; implementation
Queue (int maxSize) { of queues

this.N = maxSize + 1;
Q = new Element[N];
£f=0; r=20;}

int size () {..}

boolean isEmpty () {..}

void enqueue (Element x){ .. }

Element dequeue(){ .. }

}

An Array Implementation of Queues/4

int size ()
return (r-f£f+N) mod N

boolean isEmpty ()
return size () ==

Element dequeue ()
if isEmpty () then Error

x = Q[f]
f = (£+1) mod N
We assume return x
arrays void enqueue (Element x)
as in Java, if size()==N-1 then Error
with indexes Q[r] = x
from O to N-1 r = (r+l) mod N

62

Chapter 5 Dvnamic Data Structures

A Linked-list Implementation

Use linked-list with head and tail
Insert in tail, extract from head

head tail

N\ N\

‘o-—--‘o-—-‘o-—-»@

Vo

(Rome) (CSeattle) (Toromo)

Data Structures and Algorithms 63

Chapter 5

A Linked-list implementation/2

head tail
\ N\
A

® - ‘ o1 ‘ o—1— @

\

(Rome) (Seattle) (Toronto)

Insert at the end of the list: O(1)

void enqueue (Element x):
node p = new node() ;
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

64

Chapter 5

A Linked-list Implementation/3

head tail
N\ N
A

° > & [T ¢ o)

\

(Rome) ((Seatie) ((Torono)

Insert at the end of the list: O(1)

Element dequeue() :
X = head.info;
head = head.next;

return x;

Chapter 5 Dvnamic Data Structures

Suggested Exercises

* Implement stack and queue as arrays

* Implement stack and queue as linked lists,
with the same interface as the array implementation

Data Structures and Algorithms 66

Suggested Exercises/2

* Suppose a queue of integers is implemented with an
array of 8 elements: draw the outputs and status of such
array after the following operations:

— enqueue 2,4,3,1,7,6,9
— dequeue 3 times
— enqueue 2, 3, 4
Can we enqueue any more element?
* Try the same with a stack
* Try similar examples (also with a stack)

67

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms 68

Ordered List

* In an ordered list Elements are ordered
according to a key, which we assume to be an integer

* Example functions on ordered list:
— isEmpty ()
— int maxKey (), int minKey ()
— Element find(int key)
— Element floorEntry(int key)
— Element ceilingEntry(int key)
— insert(int key, Element x)

— print ()

69

Chapter 5 Dvnamic Data Structures

Ordered List/2

* Declaration of an ordered list similar to unordered list

* Some operations (search, and hence insert and delete)
are slightly different

class Node({
int key; value Element;

Node next;

class OList({
Node head;

Data Structures and Algorithms 70

Chapter 5 Dvnamic Data Structures

Ordered List/3

* Insertion into an ordered list (Java):

void insert(int i, Element x) {
Node g = new Node() ;
g.key = 1; g.element = x;, g.next = NULL;
Node p;

if (head == NULL || head.key > i) {
g.next = head;
head = q;

} else {

Data Structures and Algorithms 71

Chapter 5 Dvnamic Data Structures

Ordered List/4

Insertion into an ordered list (Java):

void insert(int i, Element x) {

} else {
p = head;
while (p.next !'= NULL && p.next.key < i)
P = p.next;
g.next = p.next;
p.next = q;

Data Structures and Algorithms 72

Chapter 5 Dvnamic Data Structures

Ordered List

Cost of operations:

— Insertion: O(n)

— Check isEmpty: O(1)
— Search: O(n)

— Delete: O(n)

— Print: O(n)

Data Structures and Algorithms 73

Suggested Exercises

Implement an ordered list with the following
functionalities: isEmpty, insert, search, delete, print

Implement also deleteAllOccurrences

As before, with a recursive version of: insert, search,
delete, print

— are recursive versions simpler?

Implement an efficient version of print which prints the
list in reverse order

74

Chapter 5 Dvnamic Data Structures

DSA, Chapter 5: Overview

* Dynamic Data Structures
— Records, Pointers
— Lists
* Abstract Data Types
— Stack, Queue
— Ordered Lists
— Priority Queue

Data Structures and Algorithms Ve

Priority Queues

* A priority queue (PQ) is an ADT for maintaining a set S
of elements, each with an associated value called key

* A PQ supports the following operations

— Insert(S,x) insert element xinset S (S:= S U {x})

— ExtractMax(S) returns and removes the element of S
with the largest key

* One way of implementing it: a heap

76

Array Implementation of Priority Queues

class PQueue({
int maxSize, size;
int[] A;

PQueue (int maxSize) {
this.maxsize = maxSize;
A = new int[N];
size = 0;}

int size () {..}

boolean isEmpty () {..}

void insert(int key){ .. }

int extractMax(){ .. }

}

Java-style implementation
of priority queue

of integers,

details to be worked out
as assignment

Suggested Exercises

* Implement a priority queue

* Consider the PQ of previous slides. Draw the status of
the PQ after each of the following operations:

* Insert 17,18,18,19
* Extract four numbers

* Insert again 17,18,18,19

* Build a PQ from scratch, adding and inserting elements
at will, and draw the status of the PQ after each
operation

78

Chapter 5 Dvnamic Data Structures

Summary

* Records, Pointers
* Dynamic Data Structures

— Lists (head, head/tail, doubly linked)
* Abstract Data Types

— Type + Functions

— Stack, Queue

— Ordered Lists

— Priority Queues

Data Structures and Algorithms 79

Chapter 5 Dynamic Data Structures

Next Chapter

* Binary Search Trees
* Red-Black Trees

Data Structures and Algorithms

80

