Data Structures and Algorithms Chapter 4

Heapsort and Quicksort

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
 - complete binary trees
 - heap data structure
- Quicksort
 - a popular algorithm
 - very fast on average

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
- Quicksort

Why Sorting?

- "When in doubt, sort" one of the principles of algorithm design
- Sorting is used as a subroutine in many algorithms:
 - Searching in databases:
 we can do binary search on sorted data
 - Element uniqueness, duplicate elimination
 - A large number of computer graphics and computational geometry problems

Why Sorting?/2

- Sorting algorithms represent different algorithm design techniques
- One can prove that any sorting algorithm on arrays needs at least n log n steps

Sorting has a lower bound of $\Omega(n \log n)$

 This lower bound of Ω(n log n) is used to prove lower bounds of other problems

Sorting Algorithms So Far

- Insertion sort, selection sort, bubble sort
 - worst-case running time $\Theta(n^2)$

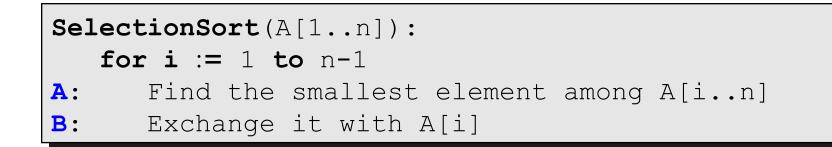
- in-place

- Merge sort
 - worst-case running time $\Theta(n \log n)$
 - requires additional memory $\Theta(n)$

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
- Quicksort

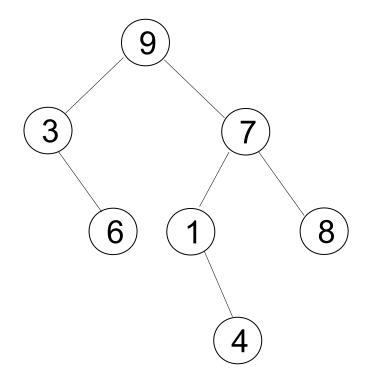
Selection Sort



- A takes $\Theta(n)$ and B takes $\Theta(1)$: $\Theta(n^2)$ in total
- · Idea for improvement: smart data structure to
 - do A and B in $\Theta(1)$
 - spend O(log n) time per iteration to maintain the data structure
 - get a total running time of $O(n \log n)$

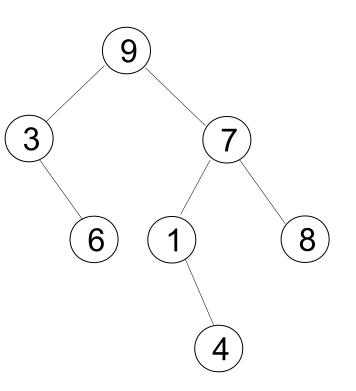
Binary Trees

- Each node may have a left and right child
 - The left child of 7 is 1
 - The right child of 7 is 8
 - 3 has no left child
 - 6 has no children
- Each node has at most one parent
 - 1 is the parent of 4
- The root has no parent
 9 is the root
- A leaf has no children
 - 6, 4 and 8 are leafs



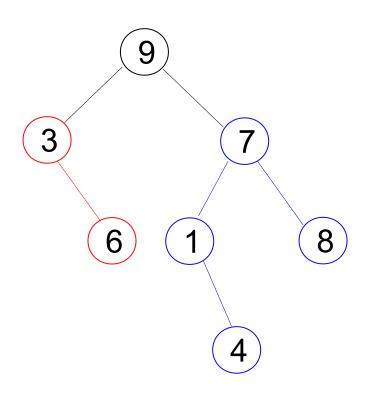
Binary Trees/2

- The depth (or level) of a node x is the length of the path from the root to x
 - The depth of 1 is 2
 - The depth of 9 is 0
- The height of a node x is the length of the longest path from x to a leaf
 - The height of 7 is 2
- The height of a tree is the height of its root
 - The height of the tree is 3



Binary Trees/3

- The right subtree of a node x is the tree rooted at the right child of x
 - The right subtree of 9 is the tree shown in blue
- The left subtree of a node x is the tree rooted at the left child of x
 - The left subtree of 9 is the tree shown in red



Complete Binary Trees

- A complete binary tree is a binary tree where
 - all leaves have the same depth
 - all internal (non-leaf) nodes have two children

What is the number of nodes in a complete binary tree of height h?

- A nearly complete binary tree is a binary tree where
 - the depth of two leaves differs by at most 1
 - all leaves with the maximal depth are as far left as possible

Binary Heaps

- A binary tree is a binary heap iff
 - it is a nearly complete binary tree
 - each node is greater than or equal to all its children
- The properties of a binary heap allow for
 - efficient storage in an array (because it is a nearly complete binary tree)
 fast sorting (because of the organization of the values)

Heap property $A[Parent(i)] \ge A[i]$ Parent(i) return |i/2| Left(i) return 2i Right(i) Level: return 2i+1

Heaps/3

- Notice the implicit tree links in the array: children of node *i* are 2*i* and 2*i*+1
- The heap data structure can be used to implement a fast sorting algorithm
- The basic elements are 3 procedures:
 - Heapify: reconstructs a heap after an element was modified
 - BuildHeap: constructs a heap from an array
 - HeapSort: the sorting algorithm

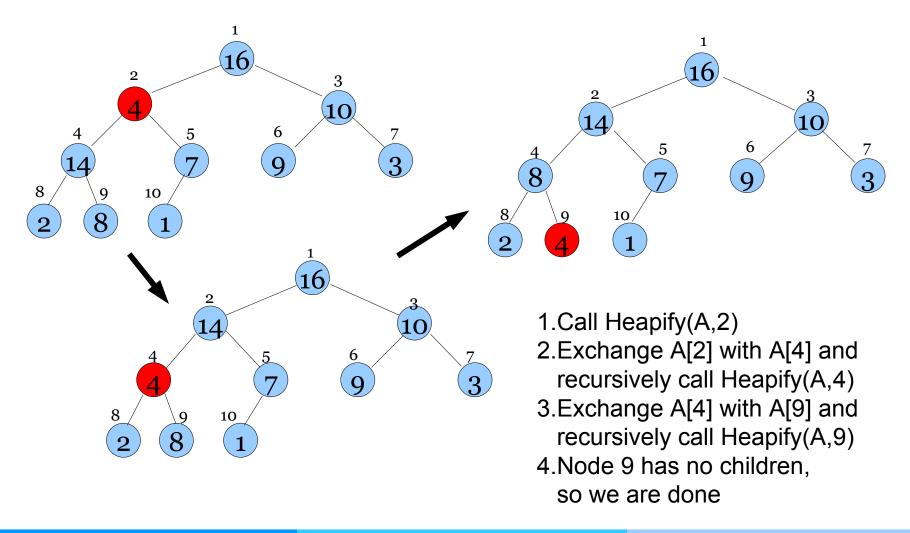
Heapify

• Input:

index *i* in array *A*, number n of elements

- Precondition:
 - binary trees rooted at *Left(i)* and *Right(i)* are heaps
 - A[i] might be smaller than its children, thus violating the heap property
- Postcondition:
 - binary tree rooted at *i* is a heap
- How it works: Heapify turns A into a heap
 - by moving A[i] down the heap until the heap property is satisfied again

Heapify Example



Heapify Algorithm

Heapify(A, i, m) // m is the length of the heap 1 := 2*i; // 1 := Left(i) r := 2*i+1; // r := Right(i) maxpos := i if 1 <= m and A[1] > A[maxpos] then maxpos := 1 if r <= m and A[r] > A[maxpos] then maxpos := r if maxpos != i then swap(A, i, maxpos) Heapify (A, maxpos, m)

Correctness of Heapify

Induction on the height of Subtree(i), the tree rooted at position i:

- height=0 \rightarrow I > n (and r > n)
 - → maxpos = i
 - ➔ Heapify does nothing

Not doing anything is fine, since Subtree(i) is a singleton tree (and therefore a heap)

Correctness of Heapify/2

height=h+1

Assume Subtree(i) is not a heap

→ A[i] < A[I] or A[i] < A[r]
 Wlog, assume A[r] = max {A[i], A[I], A[r]} and A[r] > A[i], A[r] > A[I]

 \rightarrow maxpos = r

After the return of Heapify(A,maxpos,n),

- Subtree(r) is a heap (by induction hypothesis)
- Subtree(I) is a heap (by assumption)
- $A[i] \ge A[I], A[i] \ge A[r]$ (by code of Heapify)
- → $A[i] \ge all elements in Subtree(I), Subtree(r)$
- ➔ Subtree(i) is a heap

Heapify: Running Time

The running time of Heapify

on a subtree of size *n* rooted at *i*

includes the time to

- determine relationship between elements: $\Theta(1)$
- run Heapify on a subtree rooted at one of the children of *i*
 - 2n/3 is the worst-case size of this subtree (half filled bottom level)
 - $T(n) \le T(2n/3) + \Theta(1)$ implies $T(n) = O(\log n)$
- alternatively
 - running time on a node of height h is O(h) = O(log n)

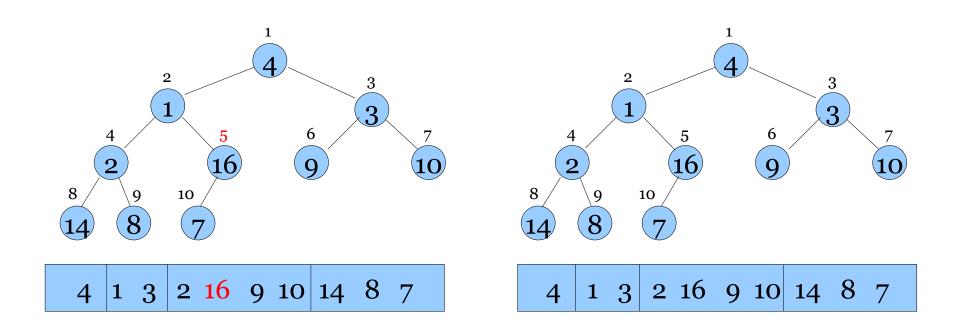
Build a Heap

- Convert an array A[1...n] into a heap
- Notice that the elements in the array segment $A[(\lfloor n/2 \rfloor + 1)..n]$

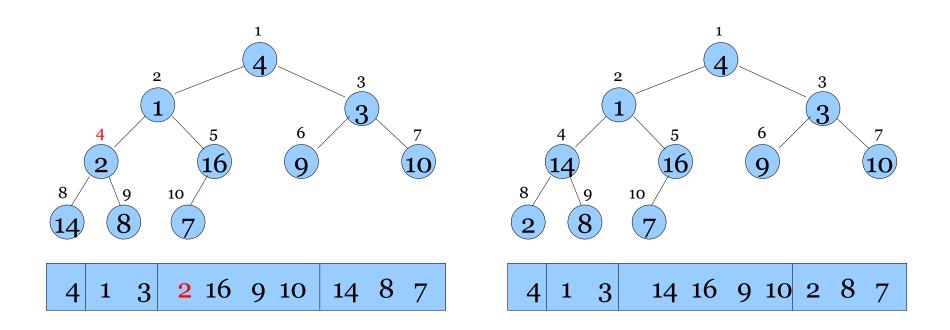
are 1-element heaps to begin with

→ only the first half of indices may need corrections

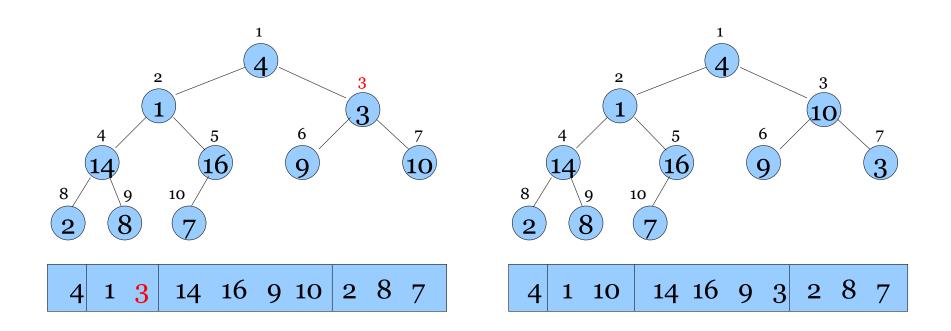
```
BuildHeap(A)
n := A.length;
for i := [n/2] downto 1 do
Heapify(A, i, n)
```



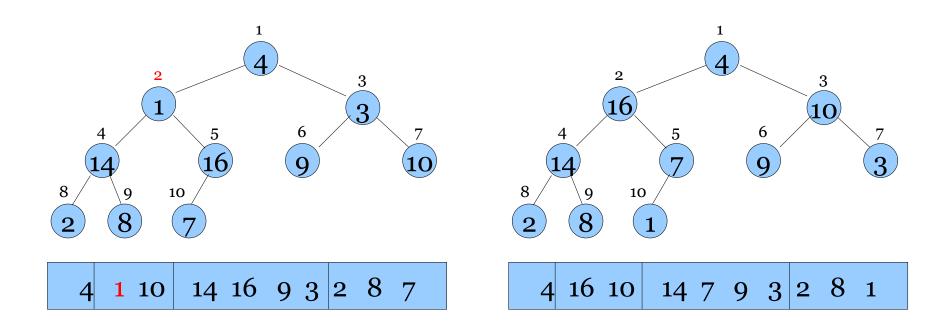
- Heapify(A, 7, 10)
- Heapify(A, 6, 10)
- Heapify(A, 5, 10)



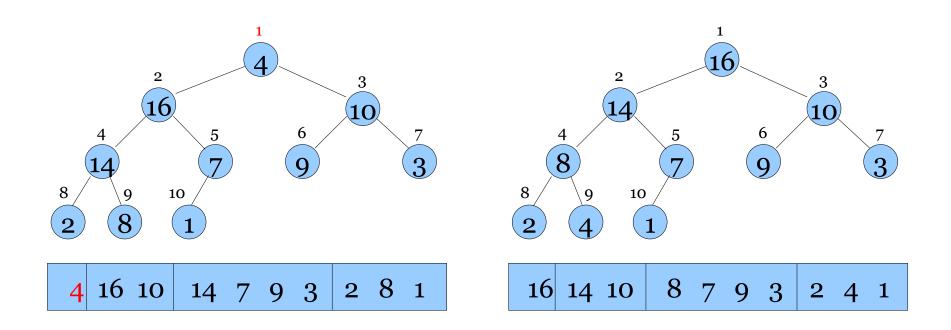
• Heapify(A, 4, 10)



• Heapify(A, 3, 10)



• Heapify(A, 2, 10)



• Heapify(A, 1, 10)

Building a Heap: Analysis

• Correctness:

Loop invariant: When Heapify(A,i,n) is called, then Subtree(j) is a heap, for all j > i

• Running time:

n calls to Heapify = *n* O(log *n*) = O(*n* log *n*) (non-tight bound, but good enough for an overall O(*n* log *n*) bound for Heapsort)

 Intuition for a tight bound of O(n) most of the time Heapify works on heaps that have a very low height

Building a Heap: Analysis/2

- Tight bound: •
 - an *n*-element heap has height log *n*
 - the heap has $n/2^{h+1}$ nodes of height h
 - cost for one call of Heapify is O(h)

$$T(n) = \sum_{h=0}^{\log n} \frac{n}{2^{h+1}} O(h) = O(n \sum_{h=0}^{\log n} \frac{h}{2^{h}})$$

Math: $\sum_{k=0}^{\infty} kx^{k} = \frac{x}{(1-x)^{2}} \qquad \sum_{k=0}^{\infty} \frac{k}{x^{k}} = \sum_{k=0}^{\infty} k(1/x)^{k} = \frac{1/x}{(1-1/x)^{2}}$

$$\sum_{k=0}^{\infty} kx = \frac{1}{(1-x)^2} \qquad \sum_{k=0}^{\infty} x^k = \sum_{k=0}^{\infty} k(1/x) = (1-1/x)^2$$

$$T(n) = O(n\sum_{h=0}^{\log n} \frac{h}{2^{h}}) = O(n\frac{1/2}{(1-1/2)^{2}}) = O(n)$$

HeapSort

Chapter 4

```
Heapsort(A)
BuildHeap(A)
for heapsize := A.length downto 2 do
swap(A,1,heapsize)
Heapify(A,1,heapsize-1)
```

The total running time of Heapsort is:

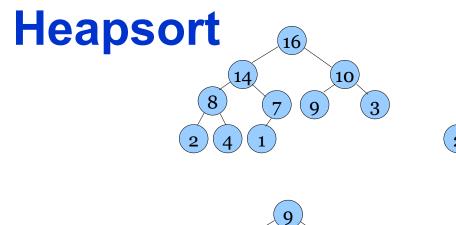
HeapSort

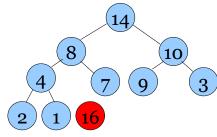
Heapsort(A)	
BuildHeap(A)	O(n)
for heapsize := A.length downto 2 do	n times
swap(A,1,heapsize)	O(1)
Heapify(A,1,heapsize-1)	O(log n)

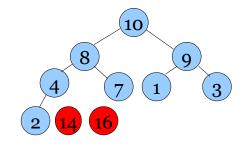
The total running time of Heapsort is: $O(n) + n * O(\log n) = O(n \log n)$

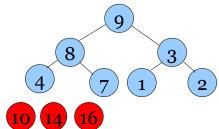
Chapter 4

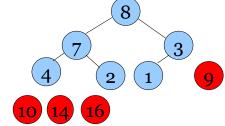
Sorting: Heapsort and Quicksort

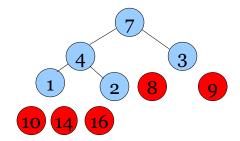


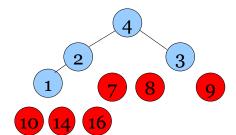


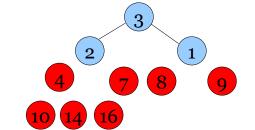


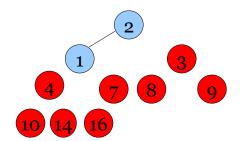


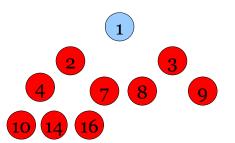












Correctness of Heapsort

Loop invariant

- A[1..heapsize] is a heap containing the heapsize least elements of A
- A[heapsize+1..(A.length)] is sorted containing the A.length-heapsize greatest elements of A

That is how Heapsort was designed!

Heapsort: Summary

- Heapsort uses a heap data structure to improve selection sort and make the running time asymptotically optimal
- Running time is O(n log n) like Merge Sort, but unlike selection, insertion, or bubble sorts
- Sorts in-place like insertion, selection or bubble sort, but unlike merge sort
- The heap data structure can also be used for other things than sorting

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
- Quicksort

Quicksort

Characteristics

- sorts in place
 (like insertion sort, but unlike merge sort)
 i.e., does not require an additional array
- very practical, average sort performance $O(n \log n)$ (with small constant factors), but worst case $O(n^2)$

Quicksort: The Principle

When applying the Divide&Conquer principle to sorting, we obtain the following schema for an algorithm:

- Divide array segment A[I..r] into two subsegments, say A[I..m] and A[m+1,r]
- Conquer: sort each subsegment by a recursive call
- Combine the sorted subsegments into a sorted version of the original segment A[I..r]

Quicksort: The Principle/2

Merge Sort takes an extreme approach in that

- no work is spent on the division
- a lot of work is spent on the combination

What does an algorithm look like where no work is spent on the combination?

Quicksort: The Principle/3

If no work is spent on the combination of the sorted segments, then, after the recursive call,

all elements in the left subsegment A[I..m] must be ≤ all elements in the right subsegment A[m+1..r] However, the recursive call can only have sorted the segments!

We conclude that the division must have partitioned A[I..r] into

- a subsegment with small elements A[l..m]
- a subsegment with big elements A[m+1..r]

Quicksort: The Principle/4

In summary:

A divide-and-conquer algorithm where

- Divide = partition array into 2 subarrays such that elements in the lower part
 elements in the higher part
- Conquer = recursively sort the 2 subarrays
- Combine = trivial since sorting has been done in place

Quick Sort Algorithm: Overview

```
INPUT: A[1..n] - an array of integers
l,r - integers satisfying l ≤ l ≤ r ≤ n
OUTPUT: permutation of the segment A[l..r] s.t.
A[l]≤ A[l+1]≤ ...≤ A[r]
Quicksort(A, l, r)
    if l < r then
    m := Partition(A, l, r)
    Quicksort(A, l, m-1)
    Quicksort(A, m+1, r)</pre>
```

Partition divides the segment A[I..r] into

- a segment of "little elements" A[I..m-1]
- a segment of "big elements" A[m+1..r],

with A[m] in the middle between the two

Partition (Version by Lomuto)

```
INPUT: A[1..n] – an array of integers
   l,r – integers satisfying l \le l < r \le n
OUTPUT: m - an integer with l \le m \le r
   a permutation of A[l..r] such that
   A[i] < A[m] for all i with l \le i < m
   A[m] \le A[i] for all i with m < i \le r
int Partition(A, l, r)
     p := A[r]; // pivot, used for the split
     el := 1-1; // end of the little ones
     for bu := 1 to r-1 do
             // bu is the <u>beginning</u> of the <u>unknown</u> area
          if A[bu] < p
             then swap(A, el+1, bu); el++;
             // all elements 
     swap(A, el+1, r)
             // move the pivot into the middle position
     return el+1
```

Partition: Loop Invariant

This version of Partition has the following loop invariant:

- A[i] < p, for all i with 1 ≤ i ≤ el
 (all little ones are < p)</pre>
- A[i] \geq p for all i with el < i < bu (all big ones are \geq p).

Clearly,

- this holds at the beginning of the execution
- this is maintained during the loop
- the loop terminates.

At the end of the loop, A[1..e1] comprises the little ones, and A[el+1..r-1] comprises the big ones. Since p = A[r] is a big one, the postcondition holds after the swap of A[el+1] and A[p].

Partitioning from the Endpoints

There is another approach to partitioning, due to Tony Hoare, the inventor of Quicksort.

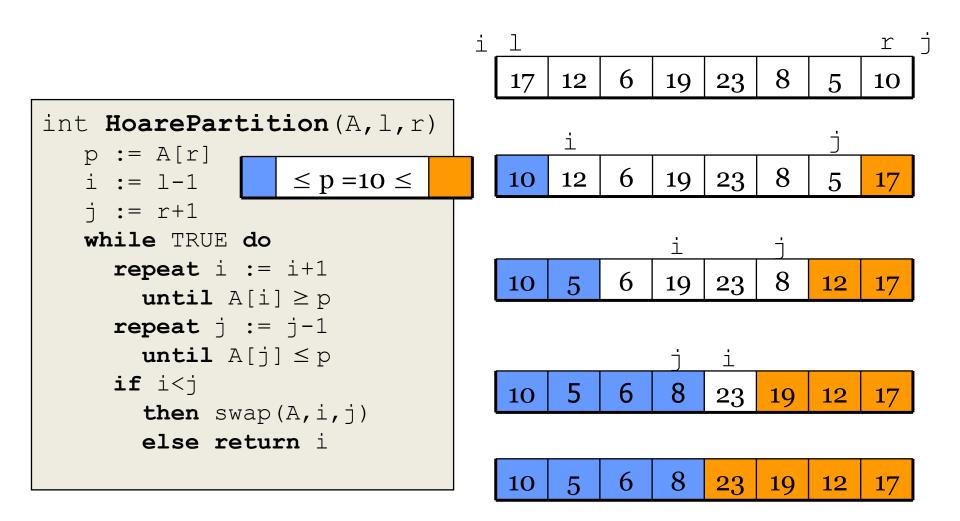
As before, we choose p:=A[r] as the pivot.

- Then repeatedly, we
- walk from right to left until we find an element $\leq p$
- walk from left to right until we find an element $\geq p$
- swap those elements.

Note that in this approach, we have no control where p ends up. Therefore, *Partition* returns an index m such that

A[i] \leq A[j], for all i, j with I \leq i \leq m and m+1 \leq j \leq r Consequently, Quicksort(A,I,r) launches two recursive calls Quicksort(A,I,m-1) and Quicksort(A,m,r)

Partitioning from the Endpoints/2



Partitioning from the Endpoints: Correctness

Relies on 3 observations (to be proven!):

- The indices i and j are such that we never access an element of A outside the subarray A[I..r].
- When HoarePartition terminates, it returns a value i such that I < i ≤ r.
- When HoarePartition terminates, every element of A[I..i-1] is less than or equal to every element of A[i..r].

Note: *Partition* separates the pivot p from the two partitions, *HoarePartition* places it into one of the two partitions (and we don't know which)

Quicksort with Partitioning from the Endpoints

```
INPUT: A[1..n] - an array of integers
    l,r - integers satisfying l ≤ l ≤ r ≤ n
OUTPUT: permutation of the segment A[l..r] s.t.
    A[l]≤ A[l+1]≤ ...≤ A[r]
```

```
Quicksort(A,l,r)
if l < r then
m := HoarePartition(A,l,r)
Quicksort(A,l,m-1)
Quicksort(A,m,r)</pre>
```

Note the different parameters of the second recursive call!

Partitioning: Lomuto vs Hoare

Which one is better?

- Lomuto partitioning is easier to understand and implement
- Hoare partitioning is faster, e.g.,
 - Lomuto swaps whenever it finds one misplaced element
 - Hoare swaps whenever it finds two misplaced elements

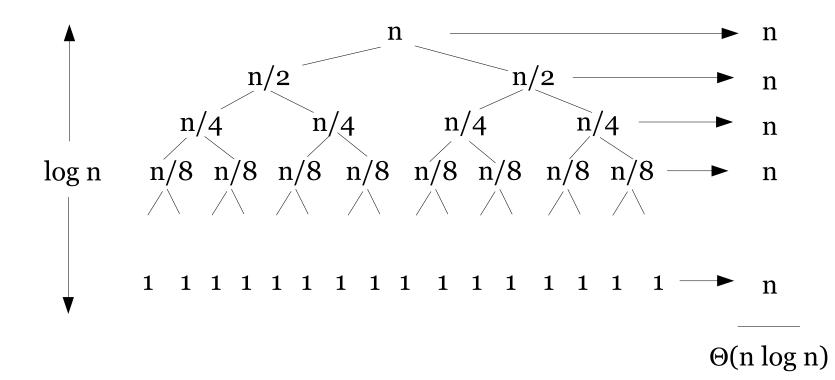
Analysis of Quicksort

The overall analysis does not depend on the variant

- Assume that all input elements are distinct
- The running time depends on the distribution of splits

Best Case

If we are lucky, Partition splits the array evenly: T(n) = 2 $T(n/2) + \Theta(n)$



Worst Case

What is the worst case?

One side of the partition has one element|

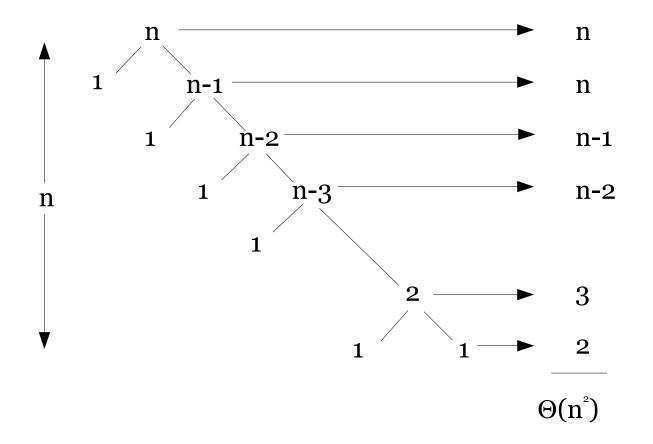
•
$$T(n) = T(n-1) + T(1) + \Theta(n)$$

= $T(n-1) + 0 + \Theta(n)$

$$= \sum_{k=1}^{n} \Theta(k)$$
$$= \Theta(\sum_{k=1}^{n} k)$$

 $= \Theta(n^2)$

Worst Case/2

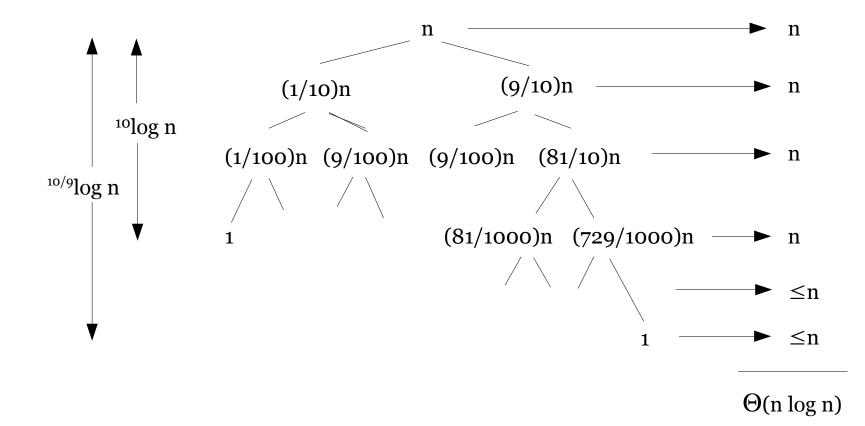


Worst Case/3

- When does the worst case appear?
 - \rightarrow one of the partition segments is empty
 - input is sorted
 - input is reversely sorted
- Similar to the worst case of Insertion Sort (reverse order, all elements have to be moved)
- But sorted input yields the best case for insertion sort

Analysis of Quicksort

Suppose the split is 1/10 : 9/10

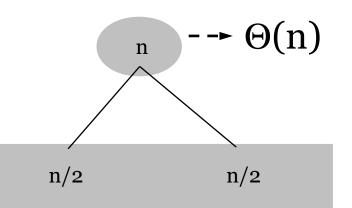


An Average Case Scenario

Suppose, we alternate lucky and unlucky cases to get an average behavior

 $n \rightarrow \Theta(n)$ $1 \qquad n-1 \qquad (n-1)/2$

 $L(n) = 2U(n/2) + \Theta(n) \text{ lucky}$ $U(n) = L(n-1) + \Theta(n) \text{ unlucky}$ we consequently get $L(n) = 2(L(n/2 - 1) + \Theta(n)) + \Theta(n)$ $= 2L(n/2 - 1) + \Theta(n)$ $= \Theta(n \log n)$



An Average Case Scenario/2

- How can we make sure that we are usually lucky?
 - Partition around the "middle" (n/2th) element?
 - Partition around a random element (works well in practice)
- Randomized algorithm
 - running time is independent of the input ordering
 - no specific input triggers worst-case behavior
 - the worst-case is only determined by the output of the random-number generator

Randomized Quicksort

- Assume all elements are distinct
- Partition around a random element
- Consequently, all splits

```
1:n-1,
2:n-2,
...,
n-1:1
are equally likely with probability 1/n.
```

 Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity.

Randomized Quicksort/2

int RandomizedPartition(A,l,r)

```
i := Random(l,r)
swap(A,i,r)
return Partition(A,l,r)
```

RandomizedQuicksort(A, 1, r)

if l < r then</pre>

m := RandomizedPartition(A,l,r)
RandomizedQuicksort(A,l,m-1)
RandomizedQuicksort(A,m+1,r)

Summary

- Heapsort
 - same idea as Max sort, but heap data structure helps to find the maximum quickly
 - a heap is a nearly complete binary tree, which here is implemented in an array
 - worst case is n log n
- Quicksort
 - partition-based: extreme case of D&C, no work is spent on combining results
 - popular, behind Unix "sort" command
 - very fast on average
 - worst case performance is quadratic

Comparison of Sorting Algorithms

- Running time in seconds, n=2048
- Absolute values are not important; compare values with each other
- Relate values to asymptotic running time (n log n, n²)

	ordered	random	inverse
Insertion	0.22	50.74	103.8
Selection	58.18	58.34	73.46
Bubble	80.18	128.84	178.66
Неар	2.32	2.22	2.12
Quick	0.72	1.22	0.76

Next Chapter

- Dynamic data structures
 - Pointers
 - Lists, trees
- Abstract data types (ADTs)
 - Definition of ADTs
 - Common ADTs