Data Structures and Algorithms
Chapter 2

Werner Nutt
Acknowledgments

• The course follows the book “Introduction to Algorithms”, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.

• These slides are based on those developed by Michael Böhlen for this course.

 (See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course.

 (See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ/\)
DSA, Chapter 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Correctness of algorithms
- Special case analysis
DSA, Chapter 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms
Analysis of Algorithms

• Efficiency:
 – Running time
 – Space used

• Efficiency is defined as a function of the input size:
 – **Number of data elements** (numbers, points)
 – The **number of bits** of an input number
The RAM Model

We study complexity on a simplified machine model, the RAM (= Random Access Machine):
- accessing and manipulating data takes a (small) constant amount of time

Among the instructions (each taking constant time), we usually choose one type of instruction as a characteristic operation that is counted:
- arithmetic (add, subtract, multiply, etc.)
- data movement (assign)
- control flow (branch, subroutine call, return)
- comparison

Data types: integers, characters, and floats
Analysis of Insertion Sort

Running time as a function of the input size
(exact analysis)

```
for j := 2 to n do
    key := A[j]
    i := j-1
    while i>0 and A[i]>key do
        A[i+1] := A[i]
        i--
    A[i+1] := key
```

$cost times$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>$\sum_{j=2}^{t_j}$</td>
<td></td>
</tr>
<tr>
<td>c5</td>
<td>$\sum_{j=2}^{t_j} (t_j-1)$</td>
<td></td>
</tr>
<tr>
<td>c6</td>
<td>$\sum_{j=2}^{t_j} (t_j-1)$</td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>n-1</td>
<td></td>
</tr>
</tbody>
</table>

t_j is the number of times the while loop is executed, i.e.,
$(t_j - 1)$ is number of elements in the initial segment greater than $A[j]$
Analysis of Insertion Sort/2

• The running time of an algorithm for a given input is the sum of the running times of each statement.

• A statement
 – with cost c
 – that is executed n times contributes $c*n$ to the running time.

• The total running time $T(n)$ of insertion sort is

$$T(n) = c1*n + c2*(n-1) + c3*(n-1) + c4 * \sum_{j=2}^{n} t_j$$
$$+ c5 \sum_{j=2}^{n} (t_j - 1) + c6 \sum_{j=2}^{n} (t_j - 1) + c7*(n - 1)$$
Analysis of Insertion Sort/3

• The running time is not necessarily equal for every input of size n

• The performance depends on the details of the input (not only length n)

• This is modeled by t_j

• In the case of Insertion Sort, the time t_j depends on the original sorting of the input array
Performance Analysis

• Often it is sufficient to count the number of iterations of the core (innermost) part
 – no distinction between comparisons, assignments, etc (that means, roughly the same cost for all of them)
 – gives precise enough results

• In some cases the cost of selected operations dominates all other costs.
 – disk I/O versus RAM operations
 – database systems
Worst/Average/Best Case

• Analyzing Insertion Sort’s
 – **Worst case**: elements sorted in inverse order, $t_j = j$, total running time is *quadratic* (time = $a n^2 + b n + c$)
 – **Average case** (= average of all inputs of size n): $t_j = j/2$, total running time is *quadratic* (time = $a n^2 + b n + c$)
 – **Best case**: elements already sorted, $t_j = 1$, innermost loop is never executed, total running time is *linear* (time = $a n + b$)

• How can we define these concepts formally? … and how much sense does “best case” make?
Worst/Average/Best Case/2

For a specific size of input size n, investigate running times for different input instances:

- **Worst case**: 4321
- **Average case**: ???
- **Best case**: 1234

![Bar chart showing running times for different input instances A to G]

- n: Best case
- $2n$: Average case
- $3n$: Worst case
Worst/Average/Best Case/3

For inputs of all sizes:

- Worst-case
- Average-case
- Best-case

Graph showing running time vs. input instance size.
Best/Worst/Average Case/4

Worst case is most often used:
- It is an upper-bound
- In certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
- For some algorithms, worst case occurs fairly often
- The average case is often as bad as the worst case

The average case depends on assumptions
- What are the possible input cases?
- What is the probability of each input?
Analysis of Linear Search

OUTPUT: j s.t. $A[j]=q$, or -1 if $\forall j(1 \leq j \leq n): A[j] \neq q$

\[
j := 1 \\
\text{while } j \leq n \text{ and } A[j] \neq q \text{ do } j++ \\
\text{if } j \leq n \text{ then return } j \\
\text{else return } -1
\]

- Worst case running time: n
- Average case running time: $(n+1)/2$ (if q is present)

 \[\ldots \text{under which assumption?}\]
Binary Search: Ideas

Search the first occurrence of q in the sorted array A

- Maintain a segment $A[l..r]$ of A such that the first occurrence of q is in $A[l..r]$ iff q is in A at all
 - start with $A[1..n]$
 - stepwise reduce the size of $A[l..r]$ by one half
 - stop if the segment contains only one element

- To reduce the size of $A[l..r]$
 - choose the midpoint m of $A[l..r]$
 - compare $A[m]$ with q
 - depending on the outcome, continue with the left or the right half ...
Binary Search, Recursive Version

INPUT: A[1..n] – sorted (increasing) array of integers, q – integer.
OUTPUT: the first index j such that A[j] = q; -1, if \(\forall j (1 \leq j \leq n): A[j] \neq q \)

```java
int findFirstRec(int q, int[] A)
    if A.length = 0 then return -1;
    return findFirstRec(q, A, l, A.length)

int findFirstRec(int q, int[] A, int l, int r)
    if l = r then
        if A[r] = q
            then return r
        else return -1;
    m := \lfloor (l+r)/2 \rfloor ;
    if A[m] < q
        then return findFirstRec(q, A, m+1, r)
    else return findFirstRec(q, A, l, m)
```
Translate `FindFirstRec` into an Iterative Method

Observations:
- `FindFirstRec` makes a recursive call only at the end (the method is “tail recursive”)
- In each call, the arguments change
- There is no need to maintain a recursion stack

Idea:
- Instead of making a recursive call, just change the variable values
- Do so, as long as the base case is not reached
- When the base case is reached, perform the corresponding actions

Result: iterative version of the original algorithm
Binary Search, Iterative Version

INPUT: A[1..n] – sorted (increasing) array of integers, q – integer.

OUTPUT: an index j such that A[j] = q. -1, if ∀j (1≤j≤n): A[j] ≠ q

```java
int findFirstIter(int q, int[] A)
    if A.length = 0 then return -1;
    l := 1; r := A.length;
    while l < r do
        m := ⌊(l+r)/2⌋;
        if A[m] < q
            then l:=m+1
        else l:=m-1
        if A[r] = q
            then return r
        else return -1;
```
Analysis of Binary Search

How many times is the loop executed?

- With each execution
 the difference between l and r is cut in half
 - Initially the difference is $n = A$’s length
 - *The loop stops when the difference becomes 1*
- How many times do you have to cut n in half to get 1?
- $\log n$ – better than the brute-force approach of linear search (n).
Linear vs Binary Search

• Costs of linear search: \(n \)

• Costs of binary search: \(\log_2 n \)

• Should we care?

• Phone book with \(n \) entries:

 - \(n = 200,000 \), \(\log_2 n = \log_2 200,000 = 8 + 10 \)

 - \(n = 2M \), \(\log_2 2M = 1 + 10 + 10 \)

 - \(n = 20M \), \(\log_2 20M = 5 + 20 \)
DSA, Part 2: Overview

• Complexity of algorithms

• Asymptotic analysis

• Special case analysis

• Correctness of algorithms
Asymptotic Analysis

• Goal: simplify the analysis of the running time by getting rid of details, which are affected by specific implementation and hardware
 – “rounding” of numbers: $1,000,001 \approx 1,000,000$
 – “rounding” of functions: $3n^2 + 2n + 8 \approx n^2$

• Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit
 – Asymptotically more efficient algorithms are best for all but small inputs
Asymptotic Notation

The “big-Oh” O-Notation

- talks about asymptotic upper bounds
- $f(n) = O(g(n))$ iff there exist $c > 0$ and $n_0 > 0$, s.t. $f(n) \leq c \cdot g(n)$ for $n \geq n_0$
- $f(n)$ and $g(n)$ are functions over non-negative integers

Used for worst-case analysis
Asymptotic Notation, Example

\[f(n) = 2n^2 + 3(n+1), \quad g(n) = 3n^2 \]

Values of \(f(n) = 2n^2 + 3(n+1) \):

\[2+6, \quad 8+9, \quad 18+12, \quad 32+15 \]

Values of \(g(n) = 3n^2 \):

\[3, \quad 12, \quad 27, \quad 64 \]

From \(n_0 = 4 \) onward, we have \(f(n) \leq g(n) \)
Asymptotic Notation, Examples

• Simple Rule: We can always drop lower order terms and constant factors, without changing big Oh:
 – $7n + 3$ is $O(n)$
 – $8n^2 \log n + 5n^2 + n$ is $O(n^2 \log n)$
 – $50n \log n$ is $O(n \log n)$

• Note:
 – $50n \log n$ is $O(n^2)$
 – $50n \log n$ is $O(n^{100})$
 but this is less informative than saying
 – $50n \log n$ is $O(n \log n)$
Asymptotic Notation/2

• The “big-Omega” Ω-Notation
 – asymptotic lower bound
 – $f(n) = \Omega(g(n))$ iff
 there exist $c > 0$ and $n_0 > 0$, s.t. $c \cdot g(n) \leq f(n)$, for $n \geq n_0$

• Used to describe lower bounds of algorithmic problems
 – E.g., searching in a sorted array with linear search is $\Omega(n)$, with binary search is $\Omega(\log n)$
Asymptotic Notation/3

• The “big-Theta” Θ-Notation
 – asymptotically tight bound
 – \(f(n) = \Theta(g(n)) \) if there exists \(c_1 > 0, c_2 > 0, \) and \(n_0 > 0, \)
 s.t. for \(n \geq n_0 \)
 \(c_1 g(n) \leq f(n) \leq c_2 g(n) \)

• \(f(n) = \Theta(g(n)) \) iff
 \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)

• Note: \(O(f(n)) \) is often used
 when \(\Theta(f(n)) \) is meant
Asymptotic Notation/4

- Analogy with real numbers
 - $f(n) = O(g(n)) \iff f \leq g$
 - $f(n) = \Omega(g(n)) \iff f \geq g$
 - $f(n) = \Theta(g(n)) \iff f = g$

- Abuse of notation:
 $f(n) = O(g(n))$ actually means
 $f(n) \in O(g(n))$
Exercise: Asymptotic Growth

Order the following functions according to their asymptotic growth.

- $2^n + n^2$
- $3n^3 + n^2 - 2n^3 + 5n - n^3$
- $20 \log_2 2n$
- $20 \log_2 n^2$
- $20 \log_2 4^n$
- $20 \log_2 2^n$
- 3^n
Growth of Functions: Rules

• For a polynomial, the highest exponent determines the long-term growth
 Example: \(n^3 + 3 \, n^2 + 2 \, n + 6 = \Theta(n^3) \)

• A polynomial with higher exponent strictly outgrows one with lower exponent
 Example: \(n^2 = O(n^3) \) but \(n^3 \neq O(n^2) \)

• An exponential function outgrows every polynomial
 Example: \(n^2 = O(5^n) \) but \(5^n \neq O(n^2) \) constant factor)
Growth of Functions: Rules/2

• An exponential function with greater base strictly outgrows an exponential function with smaller base
 Example: $2^n = O(5^n)$ but $5^n \neq O(2^n)$

• Logarithms are all equivalent (because identical up to a constant factor)
 Example: $\log_2 n = \Theta(\log_5 n)$
 Reason: $\log_a n = \log_a b \log_b n$ for all $a, b > 0$

• Every logarithm is strictly outgrown by a function n^α, where $\alpha > 0$
 Example: $\log_5 n = O(n^{0.2})$ but $n^{0.2} \neq O(\log_5 n)$
Comparison of Running Times

Determining the maximal problem size

<table>
<thead>
<tr>
<th>Running Time $T(n)$ in μs</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400n$</td>
<td>2,500</td>
<td>150,000</td>
<td>9,000,000</td>
</tr>
<tr>
<td>$20n \log n$</td>
<td>4,096</td>
<td>166,666</td>
<td>7,826,087</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>707</td>
<td>5,477</td>
<td>42,426</td>
</tr>
<tr>
<td>n^4</td>
<td>31</td>
<td>88</td>
<td>244</td>
</tr>
<tr>
<td>2^n</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
</tbody>
</table>
DSA, Part 2: Overview

• Complexity of algorithms
• Asymptotic analysis
• Special case analysis
• Correctness of algorithms
Special Case Analysis

• Consider extreme cases and make sure your solution works in all cases.

• The problem: identify special cases.

• This is related to INPUT and OUTPUT specifications.
Special Cases

- empty data structure (array, file, list, …)
- single element data structure
- completely filled data structure
- entering a function
- termination of a function

- zero, empty string
- negative number
- border of domain

- start of loop
- end of loop
- first iteration of loop
Sortedness

The following algorithm checks whether an array is sorted.

OUTPUT: TRUE if A is sorted; FALSE otherwise

$$\text{for } i := 1 \text{ to } n$$
$$\quad \text{if } A[i] \geq A[i+1] \text{ then return } \text{FALSE}$$
$$\text{return } \text{TRUE}$$

Analyze the algorithm by considering special cases.
Sortedness/2

INPUT: A[1..n] – an array of integers.

OUTPUT: TRUE if A is sorted; FALSE otherwise

```plaintext
for i := 1 to n
    if A[i] \geq A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 \(\Rightarrow\) OK
- End of loop, i=n \(\Rightarrow\) ERROR (tries to access A[n+1])
Sortedness/3

INPUT: A[1..n] – an array of integers.
OUTPUT: TRUE if A is sorted; FALSE otherwise

```plaintext
for i := 1 to n-1
    if A[i] ≥ A[i+1] then return FALSE
return TRUE
```

- Start of loop, i=1 ✗ OK
- End of loop, i=n-1 ✗ OK
- A=[1,2,3] ✗ First iteration, from i=1 to i=2 ✗ OK
Sortedness/4

INPUT: A[1..n] – an array of integers.

OUTPUT: TRUE if A is sorted; FALSE otherwise

\[
\text{for } \ i := 1 \ \text{to} \ n-1 \\
\quad \text{if } A[i] > A[i+1] \ \text{then return} \ \text{FALSE}
\]

\text{return} \ \text{TRUE}

- Start of loop, i=1 → OK
- End of loop, i=n-1 → OK
- A=[1,2,3] → First iteration, from i=1 to i=2 → OK
- A=[1,1,1] → OK
- Empty data structure, n=0 → ? (for loop)
- A=[-1,0,1,-3] → OK
Binary Search, Variant 1

Analyze the following algorithm by considering special cases.

```
l := l; r := n
do
    m := \lfloor (l+r)/2 \rfloor
    if A[m] = q then return m
    else if A[m] > q then r := m-1
    else l := m+1
while l < r
return -1
```
Binary Search, Variant 1

\[
l := 1; \quad r := n
\]
\[
do
\]
\[
m := \lfloor (l+r)/2 \rfloor
\]
\[
if \ A[m] = q \ then \ return \ m
\]
\[
else if \ A[m] > q \ then \ r := m-1
\]
\[
else \ l := m+1
\]
\[
while \ l < r
\]
\[
return -1
\]

- Start of loop \(\Rightarrow\) OK
- End of loop, \(l=r\) \(\Rightarrow\) Error! Example: search 3 in [3 5 7]
Binary Search, Variant 1

```
l := 1; r := n

do
  m := ⌊(l+r)/2⌋
  if A[m] = q then return m
  else if A[m] > q then r := m-1
  else l := m+1

while l <= r

return -1
```

- Start of loop \rightarrow OK
- End of loop, $l=r$ \rightarrow OK
- First iteration \rightarrow OK
- $A=[1,1,1] \rightarrow$ OK
- Empty array, $n=0 \rightarrow$ Error! Tries to access $A[0]$
- One-element array, $n=1 \rightarrow$ OK
Binary Search, Variant 1

\[
\begin{align*}
l &:= 1;\ r := n \\
\text{if } r < l &\text{ then return } -1; \\
do &
\begin{align*}
m &:= \lfloor (l+r)/2 \rfloor \\
\text{if } A[m] = q &\text{ then return } m \\
\text{else if } A[m] > q &\text{ then } r := m-1 \\
\text{else } &\text{ l := m+1}
\end{align*}
\text{while } l \leq r
\text{ return } -1
\end{align*}
\]

- Start of loop \(\rightarrow\) OK
- End of loop, \(l=r\) \(\rightarrow\) OK
- First iteration \(\rightarrow\) OK
- \(A=[1,1,1]\) \(\rightarrow\) OK
- Empty data structure, \(n=0\) \(\rightarrow\) OK
- One-element data structure, \(n=1\) \(\rightarrow\) OK
Binary Search, Variant 2

Analyze the following algorithm by considering special cases

\[
\begin{align*}
l &:= 1; r := n \\
\text{while } l < r \text{ do} \\
m &:= \lfloor (l+r)/2 \rfloor \\
\text{if } A[m] \leq q \\
\quad \text{then } l := m+1 \text{ else } r := m \\
\text{if } A[l-1] = q \\
\quad \text{then return } l-1 \text{ else return } -1
\end{align*}
\]
Binary Search, Variant 3

Analyze the following algorithm by considering special cases

\[
\begin{align*}
l &:= 1; \quad r := n \\
\text{while } &l \leq r \text{ do} \\
& m := \lfloor (l+r)/2 \rfloor \\
& \quad \text{if } A[m] \leq q \\
& \quad \quad \text{then } l := m+1 \quad \text{else } r := m \\
& \quad \text{if } A[l-1] = q \\
& \quad \quad \text{then return } l-1 \quad \text{else return } -1
\end{align*}
\]
Insertion Sort, Slight Variant

• Analyze the following algorithm by considering special cases
• Hint: beware of lazy evaluations

INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s.t.

```plaintext
for j := 2 to n do
    key := A[j]; i := j-1;
    while A[i] > key and i > 0 do
        A[i+1] := A[i]; i--;
    A[i+1] := key
```
DSA, Part 2: Overview

- Complexity of algorithms
- Asymptotic analysis
- Special case analysis
- Correctness of algorithms
Correctness of Algorithms

• An algorithm is **correct** if for every legal input, it terminates and produces the desired output.

• Automatic proof of correctness is not possible (this is one of the so-called “undecidable problems”)

• There are **practical techniques** and **rigorous formalisms** that help one to reason about the correctness of (parts of) algorithms.
Partial and Total Correctness

- Partial correctness

 every legal input \rightarrow \text{Algorithm} \rightarrow \text{output}

 IF this point is reached, THEN this is the output

- Total correctness

 every legal input \rightarrow \text{Algorithm} \rightarrow \text{output}

 INDEED this point is reached, AND this is the output
Assertions

• To prove partial correctness we associate a number of assertions (statements about the state of the execution) with specific checkpoints in the algorithm.

 – E.g., “A[1], …, A[j] form an increasing sequence”

• Preconditions – assertions that must be valid before the execution of an algorithm or a subroutine (INPUT)

• Postconditions – assertions that must be valid after the execution of an algorithm or a subroutine (OUTPUT)
Pre- and Postconditions of Linear Search

INPUT: $A[1..n]$ – a array of integers,
q – an integer.

OUTPUT: j s.t. $A[j]=q$. -1 if $\forall i (1 \leq i \leq n): A[i] \neq q$

\[
j := 1 \\
\textbf{while } j \leq n \textbf{ and } A[j] \neq q \textbf{ do } j++ \\
\textbf{if } j \leq n \textbf{ then return } j \\
\textbf{else return } -1
\]

How can we be sure that
– whenever the precondition holds,
– also the postcondition holds?
Loop Invariant in Linear Search

\[j := 1 \]
\[\textbf{while } j \leq n \textbf{ and } A[j] \neq q \textbf{ do } j++ \]
\[\textbf{if } j \leq n \textbf{ then return } j \]
\[\textbf{else return } -1 \]

Whenever the beginning of the loop is reached, then

\[A[i] \neq q \quad \text{for all } i \text{ where } 1 \leq i < j \]

When the loop stops, there are two cases

- \(j = n+1 \), which implies \(A[i] \neq q \) for all \(i, \ 1 \leq i < n+1 \)
- \(A[j] = q \)
Loop Invariant in Linear Search

```latex
j := 1
while j ≤ n and A[j] != q do j++
if j ≤ n then return j
else return -1
```

Note: The condition

\[A[i] \neq q \text{ for all } i \text{ where } 1 ≤ i < j \]

- holds when the loop is entered for the first time
- continues to hold until we reach the loop for the last time
Loop Invariants

- **Invariants**: assertions that are valid every time the beginning of the loop is reached (many times during the execution of an algorithm)
- We must show three things about loop invariants:
 - **Initialization**: it is true prior to the first iteration.
 - **Maintenance**: *if* it is true before an iteration, *then* it is true after the iteration.
 - **Termination**: when a loop terminates, the invariant gives a useful property to show the correctness of the algorithm.
Example: Version of Binary Search/1

- We want to show that q is not in A if -1 is returned.
- **Invariant:**
 \[\forall i \in [1..l-1]: A[i] < q \] (ia)
 \[\forall i \in [r+1..n]: A[i] > q \] (ib)
- **Initialization:** \(l = 1, r = n \)
 the invariant holds because there are no elements to the left of \(l \) or to the right of \(r \).
 \(l = 1 \) yields \(\forall i \in [1..0]: A[i] < q \)
 this holds because \([1..0]\) is empty
 \(r = n \) yields \(\forall i \in [n+1..n]: A[i] > q \)
 this holds because \([n+1..n]\) is empty

```
l := 1; r := n;
m := \lfloor (l+r)/2 \rfloor;
while l <= r and A(m) != q do
  if q < A(m)
    then r := m-1
  else l := m+1
  m := \lfloor (l+r)/2 \rfloor;
if l > r
  then return -1
else return m
```
Example: Version of Binary Search/2

- **Invariant:**
 \[
 \forall i \in [1..l-1]: A[i] < q \quad (ia) \\
 \forall i \in [r+1..n]: A[i] > q \quad (ib)
 \]

- **Maintenance:** 1 ≤ l, r ≤ n, m = ⌊(l+r)/2⌋

 We consider two cases:

 - A[m] != q & q < A[m]: implies r = m-1
 A sorted implies \(\forall k \in [r+1..n]: A[k] > q \quad (ib) \)
 - A[m] != q & A[m] < q: implies l = m+1
 A sorted implies \(\forall k \in [1..l-1]: A[k] < q \quad (ia) \)
Example: Version of Binary Search/3

- **Invariant:**
 \[\forall i \in [1..l-1]: A[i] < q \] (ia)
 \[\forall i \in [r+1..n]: A[i] > q \] (ib)

- **Termination:** \(1 \leq l, r \leq n, l \leq r \)
 Two cases:
 \[l := m+1 \quad \text{implies} \quad l_{\text{new}} = \lfloor (l+r)/2 \rfloor + 1 > l_{\text{old}} \]
 \[r := m-1 \quad \text{implies} \quad r_{\text{new}} = \lfloor (l+r)/2 \rfloor - 1 < r_{\text{old}} \]

 - The range gets smaller during each iteration and the loop will terminate when \(l \leq r \) no longer holds.
for j := 2 to n do
 key := A[j]
 i := j-1
 while i>0 and A[i]>key do
 A[i+1] := A[i]
 i--
 A[i+1] := key
Example: Insertion Sort/1

Loop invariants:
External “for” loop
Let A^{orig} denote the array at the beginning of the for loop: $A[1..j-1]$ is sorted $A[1..j-1] \in A^{\text{orig}}[1..j-1]$

Internal “while” loop
Let A^{orig} denote the array at beginning of the while loop:
- $A[1..i] = A^{\text{orig}}[1..i]$
- $A[i+2..j] = A^{\text{orig}}[i+1..j-1]$
- $A[k] > \text{key}$ for all k in $\{i+2,...,j\}$

$$
\text{for } j := 2 \text{ to } n \text{ do}
key := A[j]
i := j-1
\text{while } i>0 \text{ and } A[i] > \text{key} \text{ do}
A[i+1] := A[i]
i--
A[i+1] := key
$$
Example: Insertion Sort/2

External for loop:
(i) $A[1..j-1]$ is sorted
(ii) $A[1..j-1] \in A^{\text{orig}}[1..j-1]

Internal while loop:
- $A[1..i] = A^{\text{orig}}[1..i]$
- $A[i+2..j] = A^{\text{orig}}[i+1..j-1]$
- $A[k] > \text{key}$ for all k in $\{i+2, \ldots, j\}$

Initialization:
External loop: (i), (ii) $j = 2$: $A[1..1] \in A^{\text{orig}}[1..1]$ and is trivially sorted
Internal loop: $i = j-1$:
- $A[1..j-1] = A^{\text{orig}}[1..j-1]$, since nothing has happened
- $A[j+1..j] = A^{\text{orig}}[j..j-1]$, since both sides are empty
- $A[k] > \text{key}$ holds trivially for all k in the empty set

```
for j := 2 to n do
    key := A[j]
    i := j-1
    while i>0 and A[i]>key do
        A[i+1] := A[i]
        i--
        A[i+1] := key
```
Example: Insertion Sort/3

External for loop:
(i) \(A[1..j-1] \) is sorted
(ii) \(A[1..j-1] \in A_{orig}[1..j-1] \)

Internal while loop:
- \(A[1..i] = A_{orig}[1..i] \)
- \(A[i+2..j] = A_{orig}[i+1..j-1] \)
- \(A[k] > key \) for all \(k \) in \(\{i+2,\ldots,j\} \)

Maintenance internal while loop

Before the decrement “\(i -- \)”, the following facts hold:
- \(A[1..i-1] = A_{orig}[1..i-1] \) (because nothing in \(A[1..i-1] \) has been changed)
- \(A[i+1..j] = A_{orig}[i..j-1] \) (because \(A[i] \) has been copied to \(A[i+1] \) and \(A[i+2..j] = A_{orig}[i+1..j-1] \)
- \(A[k] > key \) for all \(k \) in \(\{i+1,\ldots,j\} \) (because \(A[i] \) has been copied to \(A[i+1] \))

After the decrement “\(i -- \)”, the invariant holds because \(i-1 \) is replaced by \(i \).

```plaintext
for j := 2 to n do
  key := A[j]
  i := j-1
  while i>0 and A[i]>key do
    A[i+1] := A[i]
    i--
    A[i+1] := key
```
Example: Insertion Sort/4

External for loop:
(i) \(A[1..j-1]\) is sorted
(ii) \(A[1..j-1] \in A^\text{orig}[1..j-1]\)

Internal while loop:
- \(A[1..i] = A^\text{orig}[1..i]\)
- \(A[i+2..j] = A^\text{orig}[i+1..j-1]\)
- \(key < A[k]\) for all \(k\) in \(\{i+2,...,j\}\)

Termination internal while loop
The while loop terminates, since \(i\) is decremented in each round.

Termination can be due to two reasons:
\(i=0\): \(A[2..j] = A^\text{orig}[1..j-1]\) and \(key < A[k]\) for all \(k\) in \(\{2,...,j\}\) (because of the invariant)
implies \(key, A[2..j]\) is a sorted version of \(A^\text{orig}[1..j]\)

\(A[i] \leq key\): \(A[1..i] = A^\text{orig}[1..i], A[i+2..j] = A^\text{orig}[i+1..j-1]\), \(key = A^\text{orig}[j]\)
implies \(A[1..i], key, A[i+2..j]\) is a sorted version of \(A^\text{orig}[1..j]\)
Example: Insertion Sort/5

External for loop:
(i) $A[1..j-1]$ is sorted
(ii) $A[1..j-1] \in A_{\text{orig}}[1..j-1]$

Internal while loop:
- $A[1..i] = A_{\text{orig}}[1..i]$
- $A[i+2..j] = A_{\text{orig}}[i+1..j-1]$
- key < $A[k]$ for all k in {i+2,...,j}

Maintenance of external for loop

When the internal while loop terminates, we have (see previous slide):

$A[1..i]$, key, $A[i+2..j]$ is a sorted version of $A_{\text{orig}}[1..j]$

After
- assigning key to $A[i+1]$ and
- Incrementing j,
the invariant of the external loop holds again.

```plaintext
for j := 2 to n do
    key := A[j]
    i := j-1
    while i>0 and A[i]>key do
        A[i+1] := A[i]
        i--
        A[i+1] := key
```
Example: Insertion Sort/6

External for loop:
(i) $A[1..j-1]$ is sorted
(ii) $A[1..j-1] \in A_{\text{orig}}[1..j-1]$

Internal while loop:
- $A[1..i] = A_{\text{orig}}[1..i]$
- $A[i+2..j] = A_{\text{orig}}[i+1..j-1]$
- key < $A[k]$ for all $k \in \{i+2,\ldots,j\}$

Termination of external for loop
The for loop terminates because j is incremented in each round.
Upon termination, $j = n+1$ holds.
In this situation, the loop invariant of the for loop says:

$$A[1..n] \text{ is sorted and contains the same values as } A_{\text{orig}}[1..n]$$

That is, A has been sorted.
Example: Bubble Sort

INPUT: A[1..n] – an array of integers

for j := 1 to n-1 do
 for i := n downto j+1 do
 if A[i-1] > A[i] then
 swap(A,i-1,i)

• What is a good loop invariant for the outer loop?
 (i.e., a property that always holds at the end of line 1)

• … and what is a good loop invariant for the inner loop?
 (i.e., a property that always holds at the end of line 2)
Example: Bubble Sort

![Array A](image)

Strategy

- Start from the back and compare pairs of adjacent elements.
- Swap the elements if the larger comes before the smaller.
- In each step, the smallest element of the unsorted part is moved to the beginning of the unsorted part and the sorted part grows by one.

```plaintext
44 55 12 42 94 18 06 67
06 44 55 12 42 94 18 67
06 12 44 55 18 42 94 67
06 12 18 44 55 42 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
```
Exercise

• Apply the same approach that we used for insertion sort to prove the correctness of bubble sort and selection sort.
Math Refresher

- Arithmetic progression

\[\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = \frac{n(n+1)}{2} \]

- Geometric progression (for a number \(a \neq 1 \))

\[\sum_{i=0}^{n} a^i = 1 + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a} \]
Induction Principle

We want to show that property P is true for all integers $n \geq n_0$.

Basis: prove that P is true for n_0.

Inductive step: prove that if P is true for all k such that $n_0 \leq k \leq n - 1$ then P is also true for n.

Exercise: Prove that every Fibonacci number of the form $\text{fib}(3n)$ is even
Summary

• Algorithmic complexity
• Asymptotic analysis
 – Big O and Theta notation
 – Growth of functions and asymptotic notation
• Correctness of algorithms
 – Pre/Post conditions
 – Invariants
• Special case analysis