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In the lecture we have defined the three central concepts we use in comparing
the growth of functions from the naturals to the nonnegative reals. The functions
we are interested in are typically the worst-case running time of and algorithm,
sometimes the average-case running time, and sometimes the amount of storage
required.

Definition 1. Let f , g : N → R+ be functions from the natural numbers to the
non-negative real numbers. Then we say:

1. f(n) = O(g(n)) (or short, f = O(g)) if there exists a real number C > 0
and a natural number n0 ∈ N such that for all n ≥ n0 it holds that

f(n) ≤ C · g(n);

2. f(n) = Ω(g(n)) (or short, f = Ω(g)) if there exists a real number C > 0
and a natural number n0 ∈ N such that for all n ≥ n0 it holds that

f(n) ≥ C · g(n);

3. f(n) = Θ(g(n)) (or short, f = Θ(g)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

The first definition says that in the long run, f is bounded from above my a
multiple of g, while the second definition says that in the long run, f is bounded
from below my a multiple of g. The last definition says that f is bounded multiples
of g both from above and from below, and therefore in the long run, f and g behave
similarly up to constant multiples.

For instance, if f(n) = O(n), we say that the growth of f is at most linear,
if f(n) = O(n2), we say that f ’s growth is at most quadratic, and so on. If the
anologous statements about f hold where the big O O(·) is replaced with a big
theta Θ(·), then we say that the growth of f is linear or quadratic, respectively.

The next proposition says (1) that the relation “f = O(g)” is reflexive, (2) that
the relation “f = O(g)” is also transitive, (3) that the relation “f = O(g)” is
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the converse of “f = Ω(g)”, and (4) that the relation “f = Θ(g)” is symmetric.
Together, (1), (1), and (4) say that the relation “f = Θ(g)” is an equivalence
relation.

Proposition 2. 1. For all f : N→ R+, it holds that f = O(f).

2. If f = O(g) and g = O(h), then f = O(h).

3. We have f = O(g) iff g = Ω(f).

4. We have f = Θ(g) iff g = Θ(f).

Proof. (1.) Choose C = 1 and n0 = 1.
(2.) Suppose f = O(g) and g = O(h), then f = O(h). Then there exist C1,

C2 > 0 and n1, n2 ∈ N such that

– f(n) ≤ C1g(n) for all n ≥ n1,

– g(n) ≤ C2h(n) for all n ≥ n2.

Let C := C1C2 and n0 := max{n1, n2}. Then f(n) ≤ C1g(n) ≤ C1C2h(n) =
Ch(n) for all n ≥ n0, which means that f = O(h).

(3.) Suppose f = O(g). Then there exist C > 0 and n0 ∈ N such that
f(n) ≤ Cg(n) for all n ≥ n0. Letting C := 1/C, it follows that g(n) ≥ C ′f(n)
for all n ≥ n0 and thus g = Ω(f).

(4.) Suppose f = Θ(g). Then f = O(g) and f = Ω(g). By Claim 2 of this
proposition, it follows first that g = Ω(f) and then, by reversing the role of f and
g in Claim 2, it follows that g = O(f).

The next lemma justifies a common approach to comparing the growth of func-
tions. It says that if we want to compare to functions f1 and g1, then we can first
simplify these functions by taking Θ-equivalent functions f2 and g2 and then com-
pare f2 and g2.

Lemma 3 (Simplification Lemma). Let f1 = Θ(f2) and g1 = Θ(g2). Then

f1 = O(g1) if and only if f2 = O(g2).

Proof. It is enough to show one direction of the claim because the other one is
symmetric, since f1 = Θ(f2) and g1 = Θ(g2) holds if and only if f2 = Θ(f1) and
g2 = Θ(g1) holds.

“⇒” Consider f1, f2, g1, g2 that satisfy the assumptions of the lemma. More-
over, let f1 = O(g1). Then we can conclude that three relationships hold between
the four functions:

1. Since f1 = Θ(f2), we have f1 = Ω(f2), which implies f2 = O(f1).

2. Since g1 = Θ(g2), we have g1 = O(g2).
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3. By assumption, f1 = O(g1).

Listing all three relationships in (1) and (3) and (2), we see that f2 = O(f1) and
f1 = O(g1) and g1 = O(g2). Thus, by transitivity we conclude that f2 = O(g2).

Now the questions arises, how we can actually perform growth comparisons.
Many functions we consider are actually restrictions of more general functions,
namely, functions from (intervals of) the real numbers to (intervals of) the real
numbers. For instance, the growth function

f : N→ R+, f(n) = 2n2 + 3n+ 5

is the restriction of

f̄ : ]0,∞[→ R, f̄(x) = 2x2 + 3x+ 5.

In the following, we will not distinguish between f and f̄ and drop the ·̄-sign.
To compare two functions f , g, we will often look at the limit limx→∞

f(x)
g(x) . To

determine this limit, the main tool is the L’Hôpital’s Rule, of which we will only
need a special case.

Theorem 4 (Special Case of L’Hôpital’s Rule). Let f , g > 0 be differentiable
functions on some interval ]c,∞[ such that

• limx→∞ f(x) = limx→∞ g(x) =∞

• g′(x) 6= 0 for all x ∈]c,∞[

• limx→∞
f ′(x)
g′(x) exists.

Then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

You find a proof of this statement in every textbook on Analysis.

Now, we come to our first criterion. It says that if the limit towards infinite of
the quotient of two functions is strictly greater than 0, then the two functions are
equivalent regarding their long-term growth.

Since this is about limits of quotients, we can often use L’Hôpital’s Rule to
apply this lemma.

Lemma 5 (Limit Criterion for Θ). Let f , g : R+ → R+ be real-valued functions.
If

lim
x→∞

f(x)

g(x)
= c > 0,

that is, the limit exists and is equal to some number c greater 0, then

f(n) = Θ(g(n)).
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Proof. Consider some ε > 0 such that c > 0 (and hence c − ε > 0). From the
definition of the limit, we conclude that there is some x0 > 0 such that for all
x > x0 we have ∣∣∣∣f(x)

g(x)
− c

∣∣∣∣ < ε. (1)

From Equation (1) we conclude

|f(x)− cg(x)| < εg(x),

which implies f(x)− cg(x) < εg(x), and hence, f(x) < (c+ ε)g(x). This shows
that f = O(g).

Similarly, we conclude

c− f(x)

g(x)
< ε,

which implies c − ε < f(x)
g(x) , hence, (c − ε)g(x) < f(x), and finally g(x) <

1
c−εf(x). This shows that g = O(f) and concludes the proof.

A simple application of this criterion gives us that f(n) = 2n2 + 3n+ 5 from
above is Θ-equivalent to g(n) = n2, that is, we can drop all the lower order terms
and the coefficient of the highest-order term. We show that by considering the limit
limx→∞

2x2+3x+5
x2

. Applying L’Hôpital’s Rule twice, we end up with limx→∞
4
2 ,

which equals 2 > 0.
Sometimes, it can be interesting to know that one function grows strictly more

strongly than another one. By applying the lemma below, one can show that one
function is dominated by another one, but not vice versa.

Lemma 6 (Criterion for Strictly Stronger Growth). Let f , g : R+ → R+ be real-
valued functions. If

lim
x→∞

f(x)

g(x)
= 0, (2)

then

1. f(n) = O(g(n))

2. g(n) 6= O(f(n)).

Proof. Equation (2) implies that there is a number x0 > 0 such that f(x)/g(x) < 1
for all x > x0. If we choose n0 as the first natural number greater x0, then we have
f(n) < 1 · g(n) for all n > n0, and thus, f(n) = O(g(n)). This proves the first
claim.

To prove the second claim, let us write up formally what it means. By defini-
tion, “g(n) = O(f(n))” means:

There exist some C > 0 and some n0 ∈ N such that for all n > n0 we
have g(n) < C · f(n).
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The negation of this statement is:

For all C > 0 and all n0 ∈ N there exists some n1 > n0 such that
g(n1) ≥ C · f(n1).

Now, consider some C > 0 and some n0 ∈ N. We want to find an n1 as specified
in the negated statement above. Because of the limit condition in Equation (2)
we know that for C there is a number nC ∈ N such that for all natural numbers
n > nC we have

f(n)

g(n)
< 1/C, that is, g(n) > C · f(n).

To satisfy the negated statement above, we define n1 := max{n0, nc} and thus
have found a number with the required properties.

As an application, let us show that n grows strictly more strongly than log n.
To check this, we need to remember the derivatives

d

dx
x = 1 and

d

dx
log x = 1/x.

Then calculating the limit

lim
x→∞

log x

x
= lim

x→∞

1/x

1
= lim

x→∞

1

x
= 0

tells us that log n grows strictly more slowly than n.
As another, simpler application let us compare f(n) = 2n and g(n) = nn.

Then considering quotients, we observe that

lim
x→∞

2

x
= 0,

and that for all x > 1 we have 2
x < 1 and therefore ( 2x)x < 2

x , which implies that

lim
x→∞

2x

xx
= lim

x→∞

(
2

x

)x
= 0.

Lemma 7. Let f(n), g(n) > 1. Then the following are equivalent:

1. f(n) = O(g(n));

2. There exist numbers c ∈ R and n0 ∈ N such that for all n ≥ n0 we have

log(f(n)) ≤ c+ log(g(n)). (3)
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Proof. “(1) ⇒ (2)” Let f(n) = O(g(n)). Then there exist numbers C > 0 and
n0 ∈ N such that for all n ≥ n0 we have f(n) ≤ Cg(n). If we apply the logarithm
to both sides of this inequality, then we obtain, due to the monotonicity of the
logarithm, that log(f(n)) ≤ logC + log(g(n)), which yields the claim with c =
logC.

“(2)⇒ (1)” If we apply the exponential function to both side of the inequality (3),
we obtain that f(n) = elog(f(n)) ≤ ec ·elog(g(n)) = C ·g(n), where we have chosen
C = ec. Then the second statement implies that f(n) = O(g(n)).

As an application, let us compare f(n) = nn and g(n) = 2n
2
. After applying

the logarithm, we have log(f(n)) = n log(n) and log(g(n)) = n2 log 2. Since
limx→∞

x log x
x2 log 2

= 0, we conclude that log(f(n)) ≤ log(g(n)) for sufficiently
large n, and therefore the f(n) = O(g(n)).

Finally, we state an almost obvious criterion. For instance, since log n grows
beyond any bound, we can conclude that n log n outgrows n beyond any bound,
that is, n log n 6= O(n). This kind of conclusion is then generalized in the follow-
ing proposition.

Proposition 8. Let f(n), g(n), h(n) > 0 such that

f(n) ≥ g(n)h(n) for all n ∈ N

and
lim
n→∞

h(n) =∞.

Then f(n) 6= O(g(n)).

Proof. Suppose there are functions f , g, h as above. We want to prove that f(n) 6=
O(g(n)). To this end we have to show that for allC > 0 and all n0 ∈ N there exists
some n1 > n0 such that g(n1) ≥ C · f(n1).

Therefore, let C > 0 and n0 ∈ N. Since limn→∞ h(n) =∞, there is a number
n0 ∈ N such that h(n) > C for all n ≥ n0. Together with inequality 8, this yields
the claim.
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