
Data Structures and Algorithms Spring-Summer 2016/17

Assignment 4 David Blumenthal, Florian Hofer,
Werner Nutt, Daniele Porello

Loop Invariants and
Performance of Sorting Algorithms

1. Loop Invariants

In this exercise we want to review loop invariants and how they can be used to
understand algorithms.
Below is pseudocode for an algorithm that is supposed to check whether an array
is sorted.

Input: Nonempty array A[1..n] of integers
Output: TRUE if the array is sorted, FALSE otherwise

BOOLEAN CHECKSORTEDNESS(INT[] A)

n :=A. l e n g t h
i :=1
w h i l e i<n and A[i]<=A[i +1] do

i ++
i f i =n

t h e n r e t u r n TRUE
e l s e r e t u r n FALSE

Our goal in this exercise is to show that CHECKSORTEDNESS does in fact check
whether an array is sorted.

1. Write down a formal definition of the statement, “Array A is sorted.”

2. State a loop invariant for the while loop of CHECKSORTEDNESS by which
you can show that the algorithm in fact is checking sortedness.

3. Give arguments that your loop invariant holds when the algorithm reaches
the while loop for the first time (initialization).

4. Give arguments that your loop invariant is maintained by each execution of
the loop (maintenance).

5. Give arguments that the loop terminates (termination).

6. Give arguments that the answer TRUE is returned only if the array was
sorted, and FALSE only if it was not sorted.

(15 Points)

2. Comparison of Sorting Algorithms

In this exercise you are asked to empirically compare two sorting algorithms, one
with a worst-case running time of O(n2) and another one with a worst-case run-
ning time of O(n log n). In particular, we would like to know for which length of
input arrays the second algorithm is faster than the first.

1. Write a Java program implementing the Insertion Sort algorithm.

2. Write a Java program implementing the Merge Sort algorithm.

3. Compare the performance of the two algorithms:

(a) Write code that generates a random array A, then runs each algorithm
on A, and records the time.

(b) Repeat this for several arrays of the same size, still recording the run-
ning times.

(c) Gradually increase the size of the arrays, until you see that one algo-
rithm is consistently faster than the other.

Is the theoretical analysis confirmed by your experiments? For which array
size is Merge Sort faster than Insertion Sort?

(15 Points)

Deliverables.

1. For question 3, hand in the Java file that you wrote.

2. Write one report for all tasks.

Combine all deliverables into one zip file, which you submit via the OLE website
of the course. Please, follow the “Instructions for Submitting Course Work” on
the Web page with the assignments, when preparing your coursework.
Submission: Until Tue, 4 April 2017, 23:55 hrs, to the OLE submission page of

Lab A / Lab B / Lab C

http://www.inf.unibz.it/~nutt/Teaching/DSA1617/DSAAssignments/instructions.pdf
https://ole.unibz.it/mod/assign/view.php?id=20352
https://ole.unibz.it/mod/assign/view.php?id=20353
https://ole.unibz.it/mod/assign/view.php?id=20355

