
Data Structures and Algorithms Spring-Summer 2016/17

Assignment 1 David Blumenthal, Florian Hofer,
Werner Nutt, Daniele Porello

1. Array Utility Class, Euclidean Algorithm

Instructions: Your assignment should represent your own effort. However, you are not
expected to work alone. It is fine to discuss the exercises and try to find solutions together,
but each student shall write down and submit his/her solutions separately. It is good
academic standard to acknowledge collaborators, so if you worked together with other
students, please list their names.
For a programming task, your solution must contain (i) an explanation of your solution to
the problem, (ii) the Java code, in a form that we can run it, (iii) instructions how to run
it. Also put the source code into your solution document. For all programming tasks, it is
not allowed to use any external libraries (“import”) if not stated otherwise.
Please, include name, student ID and email address in your submission.

1. Implementation of the basic operations of the class ArrayUtility

Implement in Java the class ArrayUtility, which offers basic operations over one-
dimensional and two-dimensional arrays. All methods must be implemented as class
methods (i.e., static methods). The signature of the methods in the ArrayUtility
class are the following:

1. public static int findMax(int[] A, int i, int j): returns the
maximum value occurring in the array A between position i and j.

2. public static int findMaxPos(int[] A, int i, int j): returns
the position of the maximum value in the array A between position i and j.

3. public static int findMin(int[] A, int i, int j): returns the
minimum value in the array A between position i and j.

4. public static int findMinPos(int[] A, int i, int j): return
the position of the minimum value in the array A between position i and j.

5. public static void swap(int[] A, int i, int j): swaps the ele-
ments in position i and j in the array A.

6. public static void shiftRight(int[] A,int i,int j): shifts
to the right all the elements of the array A starting from position i and until position
j (i.e., moves the element in position k to position k + 1 for all i ≤ k < j, and
leaves position i unchanged).

7. public static void shiftLeft(int[] A,int i,int j): shifts to
the left all the elements of the array A, from position j down to position i (i.e.,
moves the element in position k to position k − 1 for all i < k ≤ j, and leaves the
position j unchanged).



8. public static int[] createRandomArray(int size, int min,
int max): creates and returns an array of size size, of random elements with
values between min and max (use the Math.random() method of Java!).

9. public static int[][] createRandomMatrix(int rows, int
cols, int min, int max): creates and returns a two-dimensional array
with rows rows and cols columns of random elements with values between min
and max (use the Math.random() method of Java!).

10. public static int[] copyArray(int[] A): returns an array that is a
copy of A.

11. public static int[][] copyMatrix(int[][] A): returns a two-di-
mensional array that is a copy of A.

12. public static int findInArray(int[] A, int q): returns the po-
sition of the number q in the array A (returns −1 if q is not present in A).

13. public static int findInSortedArrary(int[] A, int q): re-
turns a (not the!) position of the number q in the sorted array A (returns −1 if q is
not present in A).

The method assumes that the array A is sorted, it need not be correct if A is not
sorted. Exploit the fact that the array is sorted to find an efficient algorithm. (Re-
member the Google interview questions!)

14. public static int findFirstInSortedArrary(int[] A, int q):
returns the first position where the number q occurs in the sorted array A (returns
−1 if q is not present in A).

As before, the method assumes that the array A is sorted and need not be correct if
A is not sorted. Again, exploit the fact that the array is sorted to find an efficient
algorithm.

(18 Points)

2. Euclidean Algorithm

The algorithm gcd(int a, int b) is a simple version of the Euclidean Algorithm,
which computes the greatest common divisor of two positive integers a and b:

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a = a - b;

else
b = b - a;

}
return a;

}



Write down proofs for the following statements:

1. The algorithm gcd(int a, int b) terminates for all positive integers a and
b.

2. The algorithm gcd(int a, int b) is correct, i. e., always computes the great-
est common divisor of a and b.

(12 Points)

Deliverables. For Question 1, hand in the code that you wrote. For Question 2, hand in a
PDF document containing your proofs.
Combine all deliverables into one zip file, which you submit via the OLE website of the
course.

Submission: Until Tue, 14 March 2017, 23:55 hrs, to the OLE submission page of

Lab A / Lab B / Lab C

https://ole.unibz.it/mod/assign/view.php?id=19028
https://ole.unibz.it/mod/assign/view.php?id=19029
https://ole.unibz.it/mod/assign/view.php?id=19030

