Data Structures and Algorithms

Chapter 8

Algorithms for Weighted Graphs

Werner Nutt
Acknowledgments

• The course follows the book “Introduction to Algorithms“, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.

• These slides are based on those developed by Michael Böhlen for this course.

 (See http://www.inf.unibz.it/dis/teaching/DSA/)

• The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

 (See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ/)
1. Weighted Graphs
2. Shortest Paths
 - Dijkstra’s algorithm
3. Minimum Spanning Trees
 - Greedy Choice Theorem
 - Prim’s algorithm
DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths
 – Dijkstra’s algorithm
3. Minimum Spanning Trees
 – Greedy Choice Theorem
 – Prim’s algorithm
Weighted Graphs

• May be directed or undirected graphs $G = (V,E)$
• Have a weight function $w : E \rightarrow R$

which assigns cost or length or other values to edges
DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths
 – Dijkstra’s algorithm
3. Minimum Spanning Trees
 – Greedy Choice Theorem
 – Prim’s algorithm
Shortest Path

• We generalize distance to the weighted setting
• We consider a digraph $G = (V,E)$ with weight function $w: E \rightarrow R$ (assigning real values to edges)
• The weight of path $p = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

• Shortest path = a path of minimum weight (cost)
• Applications
 – static/dynamic network routing
 – robot motion planning
 – map/route generation in traffic
Shortest-Path Problems

• **Single-source.** Find a shortest path from a given source (vertex \(s \)) to each of the vertices.

• **Single-pair.** Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.

• **All-pairs.** Find shortest-paths for every pair of vertices. Dynamic programming algorithm.

• **Unweighted shortest-paths** – BFS.
Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof:

If some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path.
Negative Weights and Cycles

Observations:

• Negative edges are OK, as long as there are no *negative weight cycles* (otherwise, paths with arbitrary small “lengths” would be possible).

• Shortest-paths can have no cycles (otherwise we could improve them by removing cycles).

 Any shortest path in graph G can be no longer than $n – 1$ edges, where n is the number of vertices.
Shortest Path Tree

• The result of the algorithms is a *shortest path tree (SPT)*. For each vertex \(v \), it
 – records a shortest path from the start vertex \(s \) to \(v \);
 – \(v.\text{pred} \) is the *predecessor of \(v \)* on this shortest path
 – \(v.\text{dist} \) is the *shortest path length* from \(s \) to \(v \)

• *Note: SPT is different from minimum spanning tree (MST)!*
Relaxation

- For each vertex v in the graph, we maintain $v.\text{dist}$, the estimate of the shortest path from s. It is initialized to ∞ at the start.
- Relaxing an edge (u,v) means testing whether we can improve the shortest path to v found so far by going through u.

\[
\text{Relax} \ (u,v) \quad \text{if} \quad v.\text{dist} > u.\text{dist} + w(u,v) \quad \text{then} \quad \\
\quad v.\text{dist} := u.\text{dist} + w(u,v) \quad \text{and} \quad \\
\quad v.\text{pred} := u
\]
Dijkstra's Algorithm

- Assumption: non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search
 (if all weights = 1, one can simply use BFS)
- Use Q, a priority queue with keys $v.dist$
 (BFS used FIFO queue, here we use a PQ, which is re-organized whenever some $dist$ decreases)
- Basic idea
 - maintain a set S of solved vertices
 - at each step, select a "closest" vertex u, add it to S, and relax all edges from u
Priority Queues

• A priority queue maintains a set S of elements, each with an associated key value.

• We need a PQ to support the following operations
 – $\text{init}(\text{VertexSet } S)$
 – $\text{Vertex extractMin}()$
 – $\text{modifyKey}(\text{Vertex } v, \text{ Key } k)$

• To choose how to implement a PQ, we need to count how many times these operations are performed.
Dijkstra’s Algorithm: Pseudo Code

Input: Graph G, start vertex s

\begin{align*}
\text{Dijkstra}(G,s) \text{ do} \\
\text{01 for } u \in G.V \\
\text{02 u.dist := } \infty \\
\text{03 u.pred := NULL} \\
\text{04 s.dist := 0} \\
\text{05 Q := new PriorityQueue} \\
\text{06 Q.init}(G.V) \text{ // initialize priority queue } Q \\
\text{07 while not Q.isEmpty() do} \\
\text{08 u := Q.extractMin()} \\
\text{09 for v !! u.adj do} \\
\text{10 if v in Q and u.dist+w(u,v) < v.dist} \\
\text{11 then Q.modifyKey(v,u.dist+w(u,v))} \\
\text{12 v.pred := u}
\end{align*}
Dijkstra’s Algorithm: Example/1

\[\text{Dijkstra}(G, s) \]
01 \text{for } u \in G.V \text{ do}
02 \hspace{1em} u.\text{dist} := \infty
03 \hspace{1em} u.\text{pred} := \text{NULL}
04 \hspace{1em} s.\text{dist} := 0
05 \hspace{1em} Q := \text{new PriorityQueue}
06 \hspace{1em} Q.\text{init}(G.V)
07 \text{while not } Q.\text{isEmpty}() \text{ do}
08 \hspace{1em} u := Q.\text{extractMin}()
09 \hspace{1em} \text{for } v \in u.\text{adj} \text{ do}
10 \hspace{2em} \text{if } v \text{ in } Q \text{ and } u.\text{dist} + w(u, v) < v.\text{dist}
11 \hspace{2em} \text{then } Q.\text{modifyKey}(v, u.\text{dist} + w(u, v))
12 \hspace{2em} v.\text{pred} := u

\[\text{G} \]

\[\text{V} \]

\[\text{E} \]

\[\text{S} \]

\[0 \]

\[u \]

\[v \]

\[x \]

\[y \]

\[10 \]

\[5 \]

\[1 \]

\[2 \]

\[3 \]

\[9 \]

\[4 \]

\[6 \]

\[7 \]

\[2 \]

\[3 \]

\[9 \]

\[4 \]

\[6 \]

\[7 \]

\[2 \]
Dijkstra's Algorithm: Example/2

\textit{Dijkstra}(G,s)

01 \textbf{for} u \in G.V \textbf{ do}
02 \hspace{1em} u.dist := \infty
03 \hspace{1em} u.pred := \text{NULL}
04 \hspace{1em} s.dist := 0
05 Q := new PriorityQueue
06 \textbf{Q.init}(G.V)
07 \textbf{while not Q.isEmpty}() \textbf{ do}
08 \hspace{1em} u := Q.extractMin()
09 \hspace{1em} \textbf{for} v \in u.adj \textbf{ do}
10 \hspace{2em} \textbf{if} v \text{ in } Q \text{ and } u.dist + w(u,v) < v.dist
11 \hspace{2.5em} \textbf{then} Q.modifyKey(v, u.dist + w(u,v))
12 \hspace{2em} v.pred := u
Dijkstra’s Algorithm: Example/3

\[\text{Dijkstra}(G, s) \]
01 \textbf{for } u \in G.V \textbf{ do}
02 \hspace{1em} u.dist := \infty
03 \hspace{1em} u.pred := \text{NULL}
04 \hspace{1em} s.dist := 0
05 \textbf{Q := new PriorityQueue}
06 \textbf{Q.init}(G.V)
07 \textbf{while not Q.isEmpty() do}
08 \hspace{1em} u := Q\text{.extractMin()}
09 \hspace{1em} \textbf{for } v \in u.\text{adj} \textbf{ do}
10 \hspace{2em} \textbf{if } v \text{ in Q and } u.\text{dist}+w(u,v) < v.\text{dist}
11 \hspace{3em} \textbf{then } Q\text{.modifyKey}(v,u.\text{dist}+w(u,v))
12 \hspace{3em} v.\text{pred} := u
Notation

For any nodes u, v in $G = (V,E)$, we define

$$\delta(u,v) = \text{minimal length of a path from } u \text{ to } v$$

We call $\delta(u,v)$ the distance from u to v
Dijkstra’s Algorithm: Correctness

• We prove that whenever u is added to the set S of solved vertices, then u.$\text{dist} = \delta(s,u)$, i.e., dist is minimum.

• Proof (by contradiction)
 – Initially $\forall v: v$.$\text{dist} \geq \delta(s,v)$
 – Let u be the first vertex such that there is a shorter path than u.dist, i.e., u.$\text{dist} > \delta(s,u)$
 – We will show that this assumption leads to a contradiction
Dijkstra’s Algorithm: Correctness/2

• Let y be the first vertex in $V \setminus S$ on the actual shortest path from s to u, then it must be that $y.dist = \delta(s,y)$ because

 – $x.dist$ is set correctly for y's predecessor $x \in S$ on the shortest path (by choice of u as the first vertex for which $dist$ is set incorrectly)

 – when the algorithm inserted x into S, it relaxed the edge (x,y), setting $y.dist$ to the correct value
Dijkstra's Algorithm: Correctness/3

\[u \text{.} \, \text{dist} > \delta(s,u) \]
\[= \delta(s,y) + \delta(y,u) \]
\[= y \text{.} \, \text{dist} + \delta(y,u) \]
\[\geq y \text{.} \, \text{dist} \]

- But \(u \text{.} \, \text{dist} > y \text{.} \, \text{dist} \) ⇒ algorithm would have chosen \(y \) (from the PQ) to process next, not \(u \)
 ⇒ contradiction

- Thus, \(u \text{.} \, \text{dist} = \delta(s,u) \) at time of insertion of \(u \) into \(S \), and Dijkstra's algorithm is correct
Implementation Issues

We highlight the operations on the priority queue

\[
\text{Dijkstra}(G,s) \text{ do }
\]

01 for \(u \in G.V \)
02 \(u.\text{dist} := \infty \)
03 \(u.\text{pred} := \text{NULL} \)
04 \(s.\text{dist} := 0 \)
05 \(Q := \text{new PriorityQueue} \)
06 \(Q.\text{init}(G.V) \) // initialize priority queue \(Q \)

07 while not \(Q.\text{isEmpty}() \) do
08 \(u := Q.\text{extractMin}() \)
09 for \(v \in u.\text{adj} \) do
10 \(\text{if } v \in Q \text{ and } u.\text{dist}+w(u,v) < v.\text{dist} \)
11 \(\text{ then } Q.\text{modifyKey}(v,u.\text{dist}+w(u,v)) \)
12 \(v.\text{pred} := u \)

initialize graph
relax edges

Data Structures and Algorithms
Priority Queue Operations

We can implement priority queues as

• simple arrays
• heaps.

In both cases,
• initializing takes time $O(n)$
• emptyness checks take time $O(1)$

However, the running times differ for
• ExtractMax()
• ModifyKey
Dijkstra’s Algorithm: Running Time

- Extract-Min executed $|V|$ times
- Modify-Key executed $|E|$ times
- Time = $|V| \times T_{\text{Extract-Min}} + |E| \times T_{\text{Modify-Key}}$
- T depends on implementation of Q

<table>
<thead>
<tr>
<th>Q</th>
<th>$T(\text{Extract-Min})$</th>
<th>$T(\text{Modify-Key})$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(</td>
<td>V</td>
<td>)$</td>
</tr>
<tr>
<td>heap</td>
<td>$O(\log</td>
<td>V</td>
<td>)$</td>
</tr>
</tbody>
</table>
DSA, Chapter 8: Overview

1. Weighted Graphs
2. Shortest Paths
 – Dijkstra’s algorithm
3. Minimum Spanning Trees
 – Greedy Choice Theorem
 – Prim’s algorithm
Spanning Tree

- A spanning tree of G is a subgraph which
 - contains all vertices of G
 - is a tree

- How many edges are there in a spanning tree, if V is the set of vertices?
Minimum Spanning Trees

- Undirected, connected graph $G = (V,E)$
- **Weight** function $W: E \rightarrow R$ (assigning cost or length or other values to edges)
- Spanning tree: tree that connects all vertexes
- **Minimum spanning tree** (MST): spanning tree T that minimizes

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$
Optimal Substructure

\[
\text{MST}(G) = T
\]

\[
\text{MST}(G') = T - (u,v)
\]

Rationale:
If \(G' \) had a cheaper subtree \(T' \), then we would get a cheaper subtree of \(G \): \(T' + (u,v) \).
Idea for an Algorithm

• We have to make $|V| - 1$ choices (edges of the MST) to arrive at the optimization goal.

• After each choice we have a sub-problem that is one vertex smaller than the original problem.
 – A dynamic programming algorithm would consider all possible choices (edges) at each vertex.
 – Goal: at each vertex cheaply determine an edge that definitely belongs to an MST.
Greedy Choice

Greedy choice property: locally optimal (greedy) choice yields a globally optimal solution.

Theorem: Let $G = (V, E)$ and $S \subseteq V$. Consider the cut of G formed by S and $V \setminus S$, that is, the partitioning into two disjoint parts.

- Suppose (u, v) is a light edge, that is, it is a \textit{min}-weight edge of G that connects S and $V – S$.
- Then (u, v) belongs to every MST of G.
Greedy Choice/2

Proof:
• Suppose \((u,v)\) is light, but \((u,v) \notin \) any MST
• Look at the path from \(u\) to \(v\) in some MST \(T\)
• Let \((x, y)\) be the first edge on a path from \(u\) to \(v\) in \(T\) that crosses from \(S\) to \(V – S\). Swap \((x, y)\) with \((u,v)\) in \(T\).
• This improves cost of \(T\)
\(\Rightarrow\) Contradiction (since \(T\) is supposed to be an MST)
Generic MST Algorithm

Generic-MST(G, w)
1 A := ∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 find an edge (u,v) that is safe for A
4 A := A ∪ {(u,v)}
5 return A

A safe edge is an edge that does not destroy A’s property.

MoreSpecific-MST(G, w)
1 A := ∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that does not split A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A := A ∪ {(u,v)}
5 return A
Prim-Jarnik Algorithm

• Vertex-based algorithm
• Grows a single MST T one vertex at a time
• The set A covers the portion of T that was already computed
• Annotate all vertices v outside of the set A with $v.key$ as the current minimum weight of an edge that connects v to a vertex in A ($v.key = \infty$ if no such edge exists)
Prim-Jarnik Algorithm/2

\[
\text{MST-Prim}(G, s)
\]

01 \textbf{for each} vertex \(u \in G.V \)

02 \hspace{1em} \textit{u.key} := \infty

03 \hspace{1em} \textit{u.pred} := \text{NULL}

04 \hspace{1em} \textit{s.key} := 0

05 \textbf{init}(Q, G.V) \quad // \text{Q is a priority queue}

06 \textbf{while} not \textbf{isEmpty}(Q)

07 \hspace{1em} \textit{u} := \textbf{extractMin}(Q) \quad // \text{add u to T}

08 \hspace{1em} \textbf{for each} \(v \in u.\text{adj} \) \textbf{do}

09 \hspace{2em} \textbf{if} \(v \in Q \) \textbf{and} \(w(u,v) < v.\text{key} \) \textbf{then}

10 \hspace{3em} \textit{v.key} := w(u,v)

11 \hspace{3em} \textbf{modifyKey}(Q, v)

12 \hspace{3em} \textit{v.pred} := u

\[\text{updating keys}\]
Prim-Jarnik Example

MST-Prim(Graph,A)

A = {}

Q = A-NULL/0, B-NULL/∞, C-NULL/∞, D-NULL/∞, E-NULL/∞, F-NULL/∞, G-NULL/∞, H-NULL/∞, I-NULL/∞
Prim-Jarnik Example/2

A = A-NULL/0
Q = B-A/4, H-A/8, C-NULL/∞, D-NULL/∞, E-NULL/∞, F-NULL/∞, G-NULL/∞, I-NULL/∞
A = A-NULL/0, B-A/4
Q = H-A/8, C-B/8, D-NULL/∞, E-NULL/∞,
 F-NULL/∞, G-NULL/∞, I-NULL/∞

Prim-Jarnik Example/3
Prim-Jarnik Example/4

A = A-NULL/0, B-A/4, H-A/8
Q = G-H/1, I-H/6, C-B/8, D-NULL/∞, E-NULL/∞, F-NULL/∞
Prim-Jarnik Example/5

A = A-NULL/0, B-A/4, H-A/8, G-H/1
Q = F-G/3, I-G/5, C-B/8, D-NULΛ/∞, E-NULΛ/∞
Prim-Jarnik Example/6

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3
Q = C-F/4, I-G/5, E-F/10, D-F/13
Prim-Jarnik Example/7

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4
Q = I-C/3, D-C/6, E-F/10
Prim-Jarnik Example/8

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3
Q = D-C/6, E-F/10
Prim-Jarnik Example/9

A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3, D-C/6
Q = E-D/9
A = A-NULL/0, B-A/4, H-A/8, G-H/1, F-G/3, C-F/4, I-C/3, D-C/6, E-D/9
Q = {}
Implementation Issues

\textbf{MST-Prim}(G, r)

01 \textbf{for} u \in G.V \textbf{ do} u.key := \infty; u.p\text{red} := \text{NULL}

02 r.key := 0

03 \textbf{init}(Q, G.V) // Q is a min-priority queue

04 \textbf{while} not \textbf{isEmpty}(Q) \textbf{ do}

05 \hspace{1em} u := \textbf{extractMin}(Q) // add u to T

06 \hspace{1em} \textbf{for} v \in u.\text{adj} \textbf{ do}

07 \hspace{2em} \textbf{if} v \in Q \textbf{ and } w(u, v) < v.key \textbf{ then}

08 \hspace{3em} v.key := w(u, v)

09 \hspace{3em} \textbf{modifyKey}(Q, v)

10 \hspace{3em} v.p\text{red} := u
Prim-Jarnik Running Time

- Time = |V|* \(T(\text{extractMin}) \) + \(O(E) \)* \(T(\text{modifyKey}) \)

<table>
<thead>
<tr>
<th>Q</th>
<th>(T(\text{extractMin}))</th>
<th>(T(\text{modifyKey}))</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log V))</td>
<td>(O(\log V))</td>
<td>(O(E \log V))</td>
</tr>
</tbody>
</table>

- \(E \geq V-1, \ E < V^2, E = O(V^2) \)
- Binary heap implementation:
 - Time = \(O(V \log V + E \log V) = O(V^2 \log V) = O(E \log V) \)
About Greedy Algorithms

• Greedy algorithms make a locally optimal choice (cheapest path, etc).
• In general, a locally optimal choice does not give a globally optimal solution.
• **Greedy** algorithms can be used to solve optimization problems, if:
 – There is an *optimal substructure*
 – We can prove that a *greedy choice* at each iteration leads to an optimal solution.