
Master Informatique 																																		1Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Data Structures and Algorithms

 Chapter 1.4

Werner Nutt

Master Informatique 																																		2Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

DSA, Chapter 1:

• Introduction, syllabus, organisation

• Algorithms

• Recursion (principle, trace, factorial, Fibonacci)

• Sorting (insertion, selection, bubble)

Master Informatique 																																		3Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting
• Sorting is a classical and important algorithmic problem.

– For which operations is sorting needed?
– Which systems implement sorting?

• We look at sorting arrays
(in contrast to files, which restrict random access)

• A key constraint are the restrictions on the space:
in-place sorting algorithms (no extra RAM).

• The run-time comparison is based on
– the number of comparisons (C) and
– the number of movements (M).

Master Informatique 																																		4Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting
• Simple sorting methods use roughly n * n comparisons

– Insertion sort
– Selection sort
– Bubble sort

• Fast sorting methods use roughly n * log n comparisons
– Merge sort
– Heap sort
– Quicksort

 What’s the point of studying those simple methods?

Master Informatique 																																		5Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Example 2: Sorting

Sort

INPUT
sequence of n numbers

a1, a 2, a 3,….,a n
b1, b2, b3,…., b n

OUTPUT
a permutation of the
input sequence of numbers

2 5 4 10 7

2 4 5 7 10

Correctness (requirements for the output)
For any given input the algorithm halts with the output:

• b1 b2 ≤ b3 ≤ …. ≤ bn

• b1, b2, b3, …., bn is a permutation of a1, a2, a3,….,an

 ≤

Master Informatique 																																		6Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort

44 55 12 42 94 18 06 67
44 55 12 42 94 18 06 67
12 44 55 42 94 18 06 67
12 42 44 55 94 18 06 67
12 42 44 55 94 18 06 67
12 18 42 44 55 94 06 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Strategy
• Start with one sorted card.
• Insert an unsorted card

at the correct position
in the sorted part.

• Continue until all unsorted
cards are inserted/sorted.

3 4 6 8 9 7 2 5 1

1 nj
i

A

Master Informatique 																																		7Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort: Principles
• Idea: stepwise, increase sorted part.

Initially, A[1..1] is sorted
• Control structure: increase stepwise from left to right

=> iteration
• Insertion into sorted part: check until position is found

=> while-loop
Number to be inserted: key:= A[j]
Move sorted part to right, until correct position found

Master Informatique 																																		8Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

The number of comparisons during the jth iteration is

– at least 1: Cmin = =

– at most j-1: Cmax = =

Insertion Sort/2
INPUT: A [1..n] – an array of in tegers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ . . . ≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

∑ j=2

n
1

∑ j=2

n
j−1

Master Informatique 																																		9Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Insertion Sort/2
INPUT: A [1..n] – an array of in tegers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ . . . ≤ A[n]

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

The number of comparisons during the jth iteration is

– at least 1: Cmin = = n - 1

– at most j-1: Cmax = = (n*n - n)/2

∑ j=2

n
1

∑ j=2

n
j−1

Master Informatique 																																		10Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

• The number of comparisons during the jth iteration is:

– j/2 on average: Cavg = = (n*n + n – 2)/4

• The number of movements Mi is (Ci-1)+2 = Ci+1:

– Mmin = = 2*(n-1),

– Mavg = = (n*n + 5n - 6)/4

– Mmax = = (n*n +n - 2)/2

Insertion Sort/3

∑ j=2

n
j /2

∑ j=2

n
j

∑j=2

n
j /2%1

∑j=2

n
2

Master Informatique 																																		11Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Ideas of Insertion Sort
• Start with something that is a trivial partial solution

– what is the initial (trivial) partial solution?
– what could be another trivial partial solution?

• Stepwise extend each partial solution to a bigger partial
solution

… until it is full solution
– in which way are the results of each (outer) iteration

partial solutions?

Master Informatique 																																		12Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Loop Invariants
• Which property (in terms of A and j) is true

whenever the execution reaches the for-loop?
• Why is it true initially?
• Why does it continue to be true later on?
• What does this property mean when the for-loop is

reached the last time?

Master Informatique 																																		13Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort

A
1 nj

1 3 42 5 7 8 9 6

i

Strategy
• Start empty handed.
• Enlarge the sorted part by swapping

the least element of the unsorted part
with the first element of the unsorted
part.

• Continue until the unsorted part
consists of one element only.

44 55 12 42 94 18 06 67
06 55 12 42 94 18 44 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Master Informatique 																																		14Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Principles
• Idea: increase the sorted part by adding the minimum of

the unsorted part.
• Initially, the empty segment A[1..0] is sorted and contains

the 0 minimal elements
• Control structure: iteration over j,

find min in A[j..n] and put it into position j
•

Master Informatique 																																		15Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Abstract Version

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j := 1 to n-1 do
 // A[1..j-1] is sorted and contains the
 // j-1 minimal elements of the array
 minpos := findMinPos(A,j,n);
 swap(A,j,minpos)

Master Informatique 																																		16Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort: Principles
• Idea: increase the sorted part by adding the minimum of

the unsorted part.
• Initially, the empty segment A[1..0] is sorted and contains

the 0 minimal elements
• Control structure: iteration over j,

find min in A[j..n] and put it into position j
• Inner loop: find the min in the rest A[j..n]

Hypothesis: min is A[j], revise during inner loop.
Control structure: iteration

Master Informatique 																																		17Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j : = 1 to n-1 do // A[1..j-1] sorted and minimum
 min : = A [j] ; minpos : = j
 for i : = j + 1 to n do
 if A [i] < min then min : = A [i] ; minpos : = i ;
 A[minpos] : = A [j] ; A [j] : = min

Master Informatique 																																		18Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

The number of comparisons is independent of the
original ordering (this is a less natural behavior than
insertion sort):

C = = (n*n - n)/2

Selection Sort/2

∑ j=1

n−1
&n− j '=∑k=1

n−1
k

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that A[1] ≤ A[2] ≤ … ≤A[n]

for j : = 1 to n-1 do // A[1..j-1] sorted and minimum
 min : = A [j] ; minpos : = j
 for i : = j + 1 to n do
 if A [i] < min then min : = A [i] ; minpos : = i ;
 A[minpos] : = A [j] ; A [j] : = min

Master Informatique 																																		19Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Selection Sort/3
The number of movements is:

Mmin = = 3*(n–1)

Mmax = = (n*n – n)/2 + 3*(n–1)

∑ j=1

n−1
3

∑ j=1

n−1
n− j%3

Master Informatique 																																		20Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort

A
1 nj

1 3 42 5 7 9 8 6

 Strategy
• Start from the back

and compare pairs
of adjacent elements.

• Swap the elements
if the larger comes
before the smaller.

• In each iteration
the smallest element
of the unsorted part
is moved to the beginning
of the unsorted part and the
sorted part grows by one.

44 55 12 42 94 18 06 67
06 44 55 12 42 94 18 67
06 12 44 55 18 42 94 67
06 12 18 44 55 42 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94
06 12 18 42 44 55 67 94

Master Informatique 																																		21Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort: Principles
• Idea: let small elements move down (= to left).

Effect: initial array segment is sorted.
• Control structure: Initially, the empty array A[1..0] is sorted,

then the sorted part grows by one element per round
=> Iteration

• Sinking down: lesser elements are swapped
with greater ones
=> Iteration

Master Informatique 																																		22Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ … ≤ A[n]

for j : = 2 to n do // A[1..j-2] sorted and minimum
 for i : = n downto j do
 if A [i-1] > A [i] then

sw a p (A ,i,i-1)

Master Informatique 																																		23Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort/2
INPUT: A[1..n] – an array of integers
OUTPUT: permutation of A s . t . A[1] ≤ A[2]≤ … ≤ A[n]

for j : = 2 to n do // A[1..j-2] sorted and minimum
 for i : = n downto j do
 if A [i-1] > A [i] then
 val : = A [i-1] ;

A [i-1] : = A [i] ;
 A [i] := val

The number of comparisons is independent of the
original ordering:

C = = (n*n - n)/2∑ j=2

n
&n− j%1'

Master Informatique 																																		24Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Bubble Sort/3
The number of movements is:

Mmin = 0

Mmax = = 3*n*(n - 1)/2

Mavg = = 3*n*(n - 1)/4

∑ j=2

n
3 &n− j%1 '

∑ j=2

n
3 &n− j%1 '/ 2

Master Informatique 																																		25Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Properties of a Sorting Algorithm
• Efficient: has low (worst case) runtime

• In place: needs (almost) no additional space
 (fixed number of scalar variables)

• Adaptive: performs little work if the array is already
 (mostly) sorted

• Stable: does not change the order of elements with
 equal key values

• Online: can sort data as it receives them

Master Informatique 																																		26Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting Algorithms: Properties
Which algorithm has which property?

Adaptive Stable Online

Insertion
Sort Yes Yes Yes

Selection
Sort No Yes, if ... No

Bubble
Sort No No

Master Informatique 																																		27Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Sorting Algorithms: Properties
Which algorithm has which property?

Adaptive Stable Online

Insertion
Sort Yes Yes Yes

Selection
Sort No

Yes
(if we select

the first
minimum)

No

Bubble
Sort No Yes No

Master Informatique 																																		28Data	Structures	and	Algorithms

Part 1 Introduc5on,	Algorithms,	Recursion,	Sor5ng

Summary
• Precise problem specification is crucial

• Precisely specify input and output

• Pseudocode, Java, C, … are largely equivalent for our
purposes

• Recursion: procedure/function that calls itself

• Sorting: important problem with classic solutions

