
Data Structures and Algorithms Spring-Summer 2015/16

Lab 2 Radityo Eko Prasojo, Werner Nutt,
Rafael Penaloza, Guohui Xiao

2. Measurements with the Class ArrayUtility
and Matrix Multiplication1

1. Implementation of Insertion Sort and Bubble Sort

In the lecture, you have seen three sorting algorithms. Implement the two algo-

rithms Insertion Sort and Bubble Sort as methods in your ArrayUtility class.

2. Analysis of the running time of Insertion Sort and Bubble Sort

In this task, you will experiment with the two algorithms Insertion Sort and Bubble

Sort, measuring their running times for varying input and analysing the times. For

each version, proceed following the guidelines below.

Automate the tests as fas as possible by writing code in Java.

1. Measure the running time for random arrays of size 10i where i = 1, 2, . . . ,m.

Start with i = 1 and keep increasing the size until the running time of the

algorithm exceeds 3 seconds, which gives you the value of m.

2. Let m be the number from Part 1 and let n = 80. For each i, where 1 i
m, we want to measure and record the running time for n random arrays of

size 10i. To do so, create a 2-dimensional m ⇥ n array T . Then, for every

i = 1, . . . ,m, and j = 1, . . . n, generate a random array A(i,j)
of size 10i,

measure the running time ti,j of the algorithm for the input A(i,j)
, and store

ti,j in T [i, j]. The result of this will be a matrix that looks like the one below

3. For each size 10i (i.e., each row of the Matrix), compute the average, the

variance, and the median values of the corresponding running times.

• The average of the running times in row i is

t̄i =

Pn
j=1 ti,j

n
.

1 2 · · · n
10 t1,1 t1,2 · · · t1,n
102 t2,1 t2,2 · · · t2,n

. . .

. . .

. . .

10m tm,1 tm,2 · · · tm,n

This is also known as the arithmetic mean.

• The variance of the running times in row i is

vi =

Pn
j=1(ti,j � t̄i)2

n
.

The variance indicates how much the values ti,j vary from the aver-

age t̄.

• The median mi of the running times in row i is the middle number in

the sorted list of running times.

For example, the median of the list {1, 2, 2, 3, 7, 8, 8} is 3. If the length

of the list is even, we define the median as the average of the two

middle values.

4. For each algorithm, output both the resulting matrix and the average, vari-

ance and median values in a simple structured way.

5. What do you deduce from the results?

Hints: (i) The variance indicates if the running times tend to be grouped

around the average time or to be dispersed (many best and worst case sce-

narios). (ii) In the presence of extreme values, the median is more robust

than the average as a measure of the centrality of the data (the “average”

performance of the algorithm).

3. Multiplication of matrices

As an additional method of ArrayUtility, implement a method that multiplies two

integer matrices A and B and returns a matrix that contains the result of the mul-

tiplication. The method should have the signature

public static int[][] MatMult(int[][] A, int[][] B).

Note that two matrices A and B can only be multiplied if the number of columns

of A equals the number of rows of B. Assuming that the dimension of A is n⇥m
and the dimension of B is m⇥ p, the resulting Matrix C = A ·B is of size n⇥ p
and its entries are computed as follows:

C[i][j] =
mX

k=1

A[i][k] · B[k][j].

This is an example of a matrix multiplication:

✓
1 2 3
4 5 6

◆
·

0

@
6 �1
3 2
0 �3

1

A

=

✓
1 · 6 + 2 · 3 + 3 · 0 1 · (�1) + 2 · 2 + 3 · (�3)
4 · 6 + 5 · 3 + 6 · 0 4 · (�1) + 5 · 2 + 6 · (�3)

◆

=

✓
12 �6
39 �12

◆

