Data Structures and Algorithms Chapter 8

Graphs

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Graphs – Definition

A graph G = (V, E) is composed of

- a set of vertices V
- a set of edges $E \subset V \times V$ connecting the vertices

An edge e = (u,v) is a pair of vertices

We assume directed graphs

- if a graph is undirected, we represent an edge between u and vby two pairs $(u,v) \in E$ and $(v,u) \in E$

$$V = \{A, B, C, D\}$$

$$E = \{(A,B), (B,A), (A,C), (C,A), (C,D), (D,C), (B,C), (C,B)\}$$

Applications

- Electronic circuits, pipeline networks
- Transportation and communication networks
- Modeling any sort of relationships (between components, people, processes, concepts)

Graph Terminology

A vertex v is adjacent to vertex u iff $(u,v) \in E$

The degree of a vertex: # of adjacent vertices

A path is a sequence of vertices $v_1, v_2, \dots v_k$ such that v_{i+1} is adjacent to v_i for $i = 1 \dots k-1$

Graph Terminology/2

Simple path – a path with no repeated vertices

Cycle – a simple path, except that the last vertex is the same as the first vertex

Connected graph – any two vertices are connected by some path

Graph Terminology/3

Subgraph – a subset of vertices and edges forming a graph

Connected component – maximal connected subgraph.

Example: the graph below has 3 connected components

Graph Terminology/4

Tree – connected graph without cycles

Forest – collection of trees

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph Representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Adjacency Matrix

Matrix M with entries for all pairs of vertices

- M[i,j] = true there is an edge (i,j) in the graph
- M[i,j] = false there is no edge (i,j) in the graph

Needs space $\Theta(|V|^2)$

Data Structures for Graphs

- The adjacency list of a vertex v: sequence of vertices adjacent to v
- A graph is represented by the adjacency lists of all its vertices

• Needs space $\Theta(|V|+|E|)$

Pseudocode Assumptions

Each node has some properties (fields of a record):

- adj: list of adjacent nodes
- dist: distance from start node in a traversal
- pred: predecessor in a traversal
- color: color of the node (is changed during traversal: white, gray, black)
- starttime: time when first visited during a traversal (depth first search)
- endtime: time when last visited during a traversal (depth first search)

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph Representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Graph Searching Algorithms

- Systematic search of every edge and vertex of the graph
- Graph G = (V,E) is either directed or undirected
- Applications
 - Memory management (Cheney algorithm for garbage collection)
 - Graphics (ray tracing)
 - Maze-solving
 - Networks: routing, searching, clustering, etc.

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph Representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Breadth-First Search

- A Breadth-First Search (BFS) traverses
 a connected component of an (un)directed graph, and
 in doing so defines a spanning tree.
- BFS in an undirected graph G is like wandering in a labyrinth with a string and exploring the neighborhood first.
- The starting vertex s, it is assigned distance 0.
- In the first round the string is unrolled 1 unit.
 All edges that are 1 edge away from the anchor are visited (discovered) and assigned distance 1.

Breadth-First Search/2

- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and assigned a distance of 2
- This continues until every vertex has been assigned a level
- The label of any vertex v corresponds to the length of the shortest path (in terms of edges) from s to v

BFS Algorithm

```
BFS (G, s)
01 for u \in G.V
02
   u.color := white
  u.dist := ∞
04
   u.pred := NULL
05 s.color := gray
06 s.dist := 0
  O := new Queue // FIFO queue
08 O.enqueue(s)
09 while not Q.isEmpty()
10
      u := Q.dequeue()
      for v \in u.adj do
12
         if v.color = white then
13
            v.color := gray
14
            v.dist := u.dist + 1
15
            v.pred := u
16
            Q.enqueue (v)
      u.color := black
```

Initialize all vertices

Initialize BFS with s

Handle all of *u*'s children before handling children of children

Coloring of Vertices

- A vertex is white if it is undiscovered
- A vertex is gray if it has been discovered but not all of its edges have been explored
- A vertex is black after all of its adjacent vertices have been discovered (the adj. list was examined completely)

Let's do an example of BFS:

BFS Running Time

Given a graph G = (V, E)

- Vertices are enqueued if their color is white
- Assuming that en- and dequeuing takes O(1) time the total cost of this operation is O(V)
- Adjacency list of a vertex is scanned when the vertex is dequeued
- The sum of the lengths of all lists is $\Theta(E)$ Thus, $\Theta(E)$ time is spent on scanning them
- Initializing the algorithm takes $\Theta(V)$

Total running time is $\Theta(V+E)$

(linear in the size of the adjacency list representation of 3)

BFS Properties

Given a graph G = (V,E).

Then BFS

- discovers all vertices reachable from a source vertex s,
- computes the shortest distance to all reachable vertices,
- computes a breadth-first tree that contains all such reachable vertices.

For any vertex *v* reachable from *s*, the path in the breadth first tree from s to v, corresponds to a shortest path in G

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Depth-First Search

A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and following one path to the end

- We start at vertex s, tying the end of our string to the point and painting s "visited (discovered)"; next we label s as our current vertex called u
- Now, we travel along an arbitrary edge (u,v)
- If edge (u,v) leads us to an already visited vertex v,
 we return to u
- If vertex v is unvisited, we unroll our string, move to v, paint v "visited", set v as our current vertex, and repeat the previous steps

Depth-First Search/2

- Eventually, we will get to a point where all edges from u lead to visited vertices
- We then backtrack by rolling up our string until we get back to a previously visited vertex v
- v becomes our current vertex and we repeat the previous steps

DFS Algorithm

u.color := white

DFS-All (G)

01 for $u \in G.V$

```
03
   u.pred := NIL
04 time := 0
05 for u \in G.V
06
  if u.color = white then DFS(u)
DFS (u)
01 u.color := gray
02 \text{ time} := \text{time} + 1
03 u.starttime := time
04 for v \in u.adj
   if v.color = white then
06 v.pred := u
         DFS(V)
08 u.color := black
09 time := time + 1
10 u.endtime := time
```

Init all vertices

Visit all vertices

Visit all children recursively (children of children are visited first)

DFS Algorithm/2

- Initialize color all vertices white
- Visit each and every white vertex using DFS-All (even if there are disconnected trees)
- Each call to DFS(u)
 roots a new tree of the depth-first forest
 at vertex u
- When DFS returns, each vertex u has assigned
 - a discovery time d[u]
 - a finishing time f[u]

Example of DFS

Start with s:

Explores subgraph s first, t second

DFS Algorithm: Running Time

Running time

- the loops in DFS-All take time $\Theta(V)$ each, excluding the time to execute DFS
- DFS is called once for every vertex
 - it's only invoked on white vertices, and
 - paints the vertex gray immediately
- for each DFS a loop interates over all v.adj

$$\sum_{v \in V} |v.adj| = \Theta(E)$$

- the total cost for DFS is $\Theta(E)$
- the running time of DFS-All is $\Theta(V+E)$

DFS versus BFS

- The BFS algorithms visits all vertices that are reachable from the start vertex.
 It returns one search tree.
- The DFS-All algorithm visits all vertices in the graph.
 It may return multiple search trees.
- The difference comes from the applications of BFS and DFS.
 - This behavior of the algorithms depends on the policy according to which the next nodes to be processed are determined.

Generic Graph Search

```
GenericGraphSearch (G, S)
01 for each vertex u ∈ G.V { u.color := white; u.pred := NIL }
04 s.color := gray
05 init (GrayVertices)
06 addTo (GrayVertices, s)
07 while not isEmpty(GrayVertices)
08
     u := extractFrom(GrayVertices)
     for each v ∈ u.adj do
09
10
       if v.color = white then
11
         v.color := gray
12
         v.pred := u
13
         addTo(GrayVertices, v)
14
     u.color := black
```

- BFS if GrayVertices is a Queue (FIFO)
- DFS if GrayVertices is a Stack (LIFO)

DFS Annotations

- A DFS can be used to annotate vertices and edges with additional information.
 - starttime (when was the vertex visited first)
 - endtime (when was the vertex visited last)
 - edge classification (tree, forward, back or cross edge)
- The annotations reveal useful information about the graph that is used by advanced algorithms

DFS Timestamping

- Vertex u is
 - white before *u.starttime*
 - gray between *u.starttime* and *u.endtime*, and
 - black after u.endtime
- Notice the structure througout the algorithm
 - gray vertices form a linear chain
 - correponds to a stack of vertices that have not been exhaustively explored (DFS started but not yet finished)

DFS Parenthesis Theorem

- Start and end times have parenthesis structure
 - represent starttime of u with left parenthesis "(u"
 - represent endtime of u with right parenthesis "u)"
 - history of start- and endtimes makes a well-formed expression (parentheses are properly nested)
- Intuition for proof: any two intervals are either disjoint or enclosed
 - Overlaping intervals would mean finishing ancestor, before finishing descendant or starting descendant without starting ancestor

DFS Parenthesis Theorem/2

DFS Edge Classification

- Tree edge (gray to white)
 - Edges in depth-first forest
- Back edge (gray to gray)
 - from descendant to ancestor in depth-first tree
 - Self-loops

DFS Edge Classification

- Forward edge (gray to black)
 - Nontree edge from ancestor to descendant in depth-first tree
- Cross edge (gray to black)
 - remainder between trees or subtrees

DFS Edge Classification/3

- In a DFS the color of the next vertex decides the edge type (this makes it impossible to distinguish forward and cross edges)
- Tree and back edges are important
- Most algorithms do not distinguish between forward and cross edges

Suggested exercises

- Implement BFS and DFS, both iterative and recursive
- Using paper & pencil, simulate the behaviour of BFS and DFS (and All-DFS) on some graphs, drawing the evolution of the queue/stack

DSA, Chapter 8: Overview

- 1. Graphs Principles
- 2. Graph representations
- 3. Traversing Graphs
 - Breadth-First Search
 - Depth-First Search
- 4. DAGs and Topological Sorting

Directed Acyclic Graphs (DAGs)

A DAG is a directed graph without cycles

- DAGs are used to indicate precedence among events (event x must happen before y)
- An example would be a parallel code execution
- We get a total order using Topological Sorting

DAG Theorem

A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof: Suppose there is a back edge (u,v):

Then v is an ancestor of u in DFS forest. Thus, there is a path from v to u in G and (u,v) completes the cycle.

Suppose there is a cycle c: Let v be the first vertex in c to be discovered and u is the predecessor of v in c.

- Upon discovering v the whole cycle from v to u is white
- We visit all nodes reachable on this white path before DFS(v) returns, i.e., vertex u becomes a descendant of v
- Thus, (u,v) is a back edge

Thus, we can verify whether G is a DAG using DFS

Topological Sorting Example

- Precedence relations: an edge from x to y means one must be done with x before one can do y
- Intuition: can schedule task only when all of its precondition subtasks have been scheduled

Topological Sorting/1

- Sorting of a directed acyclic graph (DAG)
- A topological sort of a DAG
 is a linear ordering of all its vertices
 such that for any edge (u,v) in the DAG,
 u appears before v in the ordering

Topological Sorting/2

The following algorithm topologically sorts a DAG

The linked lists comprises a total ordering

```
TopologicalSort(G)
   Call DSF(G) to compute
    v.endtime for each vertex v
   As each vertex is finished,
   insert it at the beginning of a linked list
   Return the linked list of vertices
```

Topological Sorting Correctness

Claim: If G is a DAG and $(u,v) \in E \rightarrow u$.endtime > v.endtime

- When (u,v) is explored, u is gray.
 We can distinguish three cases:
 - v.color = gray
- \rightarrow (u,v) is a back edge (cycle, contradiction)
- -v.color = white
- → v becomes descendant of u
- \rightarrow v will be finished before u
- → v.endtime < u.endtime
- v.color = black
- → v is already finished
 - → v.endtime < u.endtime
- The definition of topological sort is satisfied

Topological Sorting: Running Time

- Running time
 - depth-first search: O(V+E) time
 - insert each of the |V| vertices to the front of the linked list: O(1) per insertion
- Thus the total running time is O(V+E)

Suggested Exercises

- Implement topological sorting, with a check for the DAG property
- Using paper & pencil, simulate the behaviour of topological sorting

Summary

- Graphs
 - G = (V,E), vertex, edge,
 (un)directed graph, cycle, connected component, ...
- Graph representation: adjanceny list/matrix
- Basic techniques to traverse/search graphs
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
- Topological Sorting