Chapter 7 Hashing

Data Structures and Algorithms

Chapter 7

Hashing

Werner Nutt

Data Structures and Algorithms

Acknowledgments

* The course follows the book “Introduction to Algorithms",
by Cormen, Leiserson, Rivest and Stein, MIT Press
[CLRST]. Many examples displayed in these slides are
taken from their book.

* These slides are based on those developed by
Michael Bohlen for this course.
(See http://www.inf.unibz.it/dis/teaching/DSA/)
* The slides also include a number of additions made by

Roberto Sebastiani and Kurt Ranalter when they taught
later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

Data Structures and Algorithms 3

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

Data Structures and Algorithms

Dictionary

* Adictionary D is a dynamic data structure with
operations:

— search(D, k) — returns a pointer x to an element
such that x.key = k (null otherwise)

— insert(D, x) — adds the element pointed to by x to D

— delete(D, x) — removes the element pointed to by x
from D

* An element has a key and a satellite data part

Dictionaries

* Dictionaries store elements so that they can be located
quickly using keys
* A dictionary may hold bank accounts.

— Each account is an object that is identified by an
account number.

— Each account stores a lot of additional information.

— An application wishing to operate on an account
would have to provide the account number as a
search key.

Dictionaries/2

* If order (methods like min, max, successor, predecessor)
IS not required,
it is enough to check for equality.

* QOperations that require ordering are still possible,
but cannot use the dictionary access structure.

— Usually all elements must be compared, which is slow.
— Can be OK if it is rare enough

Chapter 7 Hashing

Dictionaries/3

* Dictionaires can be realized
by different data structures

— arrays
— linked lists
— binary trees
— red/black trees
— B-trees
— hash tables
* |n Java:
— java.util.Map — interface defining Dictionary ADT

Data Structures and Algorithms 8

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

Data Structures and Algorithms 9

Chapter 7 Hashing

The Problem

XY Telecom, a large phone company,
wants to provide a caller ID capability:

— given a phone number,
return the caller’s name

— phone numbers range from O to r = 108 -1
— do this as efficiently as possible

Data Structures and Algorithms 10

The Problem/2

* Two suboptimal ways to design this dictionary
— direct addressing: an array indexed by key:
* requires O(1) time,
* requires O(r) space - huge amount of wasted

space
(null) (null) Jens (null) (null)
0000- 0000- 0635- 0635- 0990-
0000 0001 8904 8905 9999

— a linked list: requires O(n) time, O(n) space

Jens Ole
—

9635-8904 9635-9999
-1

11

Another Solution: Hashing

* We can do better, with a hash table of size m

* Like an array, but with a function to map the large range
iInto one which we can manage

* e.g., take the original key, modulo the (relatively
small) size of the table, and use that as an index

* Insert (9635-8904, Jens) into a hash table with, say, five
slots (m = 5)
* 96358904 mod 5 = 4

(null) (null) (null) (null) Jens

o) 1 2 3 4
* O(1) expected time, O(n+m) space

12

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

13

Data Structures and Algorithms

Hash Functions

* Need to choose a good hash function (HF)

— quick to compute

— distributes keys uniformly throughout the table
* How to deal with hashing non-integer keys:

— find some way of turning the keys into integers

* In our example, remove the hyphen in 9635-8904
to get 96358904

* for a string, add up the ASCII values of the characters
of your string (e.g., java.lang.String.hashCode())

— then use a standard hash function on the integers

14

HF: Division Method

* Use the remainder: h(k) = k mod m

— k is the key, m the size of the table
* Need to choose m
* m = be (bad)

— if mis a power of 2,
h(k) gives the e least significant bits of k

— all keys with the same ending go to the same place
* m prime (good)

— helps ensure uniform distribution

— primes not too close to exact powers of 2 are best

15

Chapter 7 Hashing

HF: Division Method/2

* Example 1

— hash table for n = 2000 character strings,
ok to investigate an average of three attempts/search

—m=701
* a prime near 2000/3
* but not near any power of 2
* Further examples

- m=13
* h(3)=3
* h(12) =12
* h(13)=0

Data Structures and Algorithms 16

Chapter 7 Hashing

HF: Multiplication Method

* Use h(k)=|m (kA mod 1) |

— Kk is the key

— m the size of the table

— Alisaconstant 1/2< A< 1

— (k Amod 1): the fractional part of k A
* The steps involved

—map 0.k, into0..k__A

— take the fractional part (mod 1)
— map it into 0...m-1

Data Structures and Algorithms 17

Chapter 7 Hashing

HF: Multiplication Method/2

* Choiceofmand A

— Value of mis not critical:
typically, for some p use m = 2°

— Optimal choice of A depends
on the characteristics of the data

* Knuth says use = 0.618033988

2

A

Data Structures and Algorithms 18

Chapter 7 Hashing

HF: Multiplication Method/3

* Assume 7-bit binary keys, 0 < k <128
* m=64=2° p=6
- A=89/128 =.1011001, k=107=1101011
* Computation of h(k):
.1011001 A
1101011 k
1001010.0110011 kA
.0110011 kA mod 1
011001.1 m (kA mod 1)
* Thus, h(k) = 25

Data Structures and Algorithms 19

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

Data Structures and Algorithms 20

Collisions

Assume a key is mapped
to an already occupied table location

— what to do?

Use a collision handling technique

There are 3 techniques to deal with collisions:
— chaining

— open addressing/linear probing
— open addressing/double hashing

Data Structures and Algorithms 21

Chaining

Chaining maintains a table of links,
* Indexed by the keys,
* to lists of items with the same key

8

22

Data Structures and Algorithms

Chapter 7 Hashing

Open Addressing

* All elements are stored in the hash table
(can fill up), i.e., n<m

* Each table entry contains either an element or null

* When searching for an element,
systematically probe table slots

* Modify hash function to take probe number i
as second parameter

h:Ux{0,1,...,m1}—={0,1, .. m1)

Data Structures and Algorithms 23

Chapter 7 Hashing

Open Addressing/2

* Hash function, h, determines
the sequence of slots examined for a given key

* Probe sequence for a given key k is given by
(h(k,0), h(k,1), ..., h(k,m-1)),

which is a permutation of (0, 1, ..., m-1)

Data Structures and Algorithms 24

Linear Probing

LinearProbingInsert (k)

probe := h (k)

probe := (probe+l)
table[probe] = k

* If the current location is used, try the next table location:

h(key,i) = (h1(key)+i) mod m
* Lookups walk along the table

until the key or an empty slot is found

* Uses less memory than chaining

— one does not have to store all those links

* Slower than chaining

— one might have to probe the table for a long time

if (table is full) then error

while (table[probe] occupied)
mod m

25

Linear Probing/2

* Problem “primary clustering”:
long lines of occupied slots

— A slot preceded by i full slots has a high probability of
getting filled: (i+1)/m
* Alternatives: (quadratic probing,) double hashing
* Example:
— h(k) = kmod 13
— insert keys: 18 41 22 44 59 32 31 73

Data Structures and Algorithms 26

Double Hashing

Use two hash functions:
h(key,i) = (h1(key) + i*h2(key)) mod m, i=0,1,...

DoubleHashingInsert (k)
if (table is full) then error
probe := hl (k)
offset := h2 (k)
while (table[probe] occupied) do

probe := (probe + offset) mod m

table[probe] := k

Distributes keys much more uniformly
than linear probing.

Double Hashing/2

h2(k) must be relative prime to m
to search the entire hash table

— Suppose h2(k) =k*a and m=w"a, a>1

Two ways to ensure this:
— m is power of 2, h2(k) is odd
— m: prime, h2(k): positive integer < m

Example
— h1(k) = kmod 13, h2(k) =8 - (k mod 8)
— insert keys: 18 41 22 44 59 32 31 73

28

Open Addressing: Delete

Complex to delete from
* A slot may be reached from different points

— We cannot simply store “NIL": we'd loose the
information necessary to retrieve other keys

* Possible solution: mark the deleted slot as “deleted”,
insert also on “deleted”

— Drawback: retrieval time no more depending on load
factor: potentially lots of “jumps” on “deleted” slots

When deletion is admitted/frequent,
then chaining is preferred

29

DSA, Chapter 7: Overview

Dictionaries

Hashing

Hash Functions
Collisions
Performance Analysis

a kb=

30

Data Structures and Algorithms

Analysis of Hashing

An element with key k is stored in slot h(k)
(instead of slot k without hashing)

The hash function h maps the universe U of keys
into the slots of hash table T]0...m-1]

h:U — {0,1, .., m1)}

Assumption: Each key is equally likely to be hashed into
any slot (bucket):
simple uniform hashing

Given hash table T with m slots holding n elements,
the load factor is defined as a = n/m

31

Analysis of Hashing/2

Assume time to compute h(k) is ©(1)
To find an element
— using h, look up its position in table T

— search for the element in the linked list
of the hashed slot

— uniform hashing yields an average list length of

o = n/m
— expected number of elements to be examined is o
— search time is O(1+a)

32

Analysis of Hashing/3

Assuming the number of hash table slots is proportional to
the number of elements in the table

n=0(m)
o =n/m=0(m)/m=0(1)

— searching takes constant time on average
— insertion takes O(1) worst-case time

— deletion takes O(1) worst-case time
(pass the element not key, lists are doubly-linked)

33

Expected Number of Probes

* Load factor a < 1 for probing

* Analysis of probing uses uniform hashing assumption —
any permutation is equally likely

Unsuccessful Successful
Chaining O(1+«) O(1+a)
1 1 1

Probing O<E) O(&ln§>

Chaining: 1 (a=0%), 1.5 (¢=50%), 2 (¢=100%), n (a.=n)
Probing, unsucc: 1.25 (a=20%), 2 (¢=50%), 5 (¢=80%), 10 (=90%)
Probing, succ: 0.28 (a=20%), 1.39 (=50%), 2.01 (a¢=80%), 2.56 (=90%)

34

Chapter 7 Hashing

Expected Number of Probes/2

Y
£
E Linear Probing
= N
-~ Double Hashing
£
= /
z
/ Chaining
1.0 ===
I I -
o
0.5 1.0
Unsuccessful
Successful

Data Structures and Algorithms 35

Summary

* Hashing is very efficient
(not obvious, probability theory).

* Its functionality is limited (printing elements sorted
according to key is not supported).

* The size of the hash table
may not be easy to determine.

* A hash table is not really
a dynamic data structure.

36

Suggested exercises

* Implement a Hash Table with the different techniques

* With paper & pencil, draw the evolution of a hash table
when inserting, deleting and searching for new element,
with the different techniques

* See also exercises of CLRS

37

Chapter 7 Hashing

Next Part

* Graphs:
— Representation in memory
— Breadth-first search
— Depth-first search
— Topological sort

Data Structures and Algorithms

38

