# Data Structures and Algorithms Chapter 7

**Hashing** 

Werner Nutt

## **Acknowledgments**

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011\_BZ//)

#### **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

## **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

## **Dictionary**

- A dictionary D is a dynamic data structure with operations:
  - search(D, k) returns a pointer x to an element such that x.key = k (null otherwise)
  - insert(D, x) adds the element pointed to by x to D
  - delete(D, x) removes the element pointed to by x from D
- An element has a key and a satellite data part

#### **Dictionaries**

- Dictionaries store elements so that they can be located quickly using keys
- A dictionary may hold bank accounts.
  - Each account is an object that is identified by an account number.
  - Each account stores a lot of additional information.
  - An application wishing to operate on an account would have to provide the account number as a search key.

#### **Dictionaries/2**

- If order (methods like min, max, successor, predecessor)
  is not required,
  it is enough to check for equality.
- Operations that require ordering are still possible, but cannot use the dictionary access structure.
  - Usually all elements must be compared, which is slow.
  - Can be OK if it is rare enough

#### **Dictionaries/3**

- Dictionaires can be realized by different data structures
  - arrays
  - linked lists
  - binary trees
  - red/black trees
  - B-trees
  - hash tables
- In Java:
  - java.util.Map interface defining Dictionary ADT

### **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

#### **The Problem**

XY Telecom, a large phone company, wants to provide a caller ID capability:

- given a phone number,
   return the caller's name
- phone numbers range from 0 to  $r = 10^8 1$
- do this as efficiently as possible

#### The Problem/2

- Two suboptimal ways to design this dictionary
  - direct addressing: an array indexed by key:
    - requires O(1) time,
    - requires O(r) space huge amount of wasted space

| (null) | (null) | Jens  | (null) | (null) |
|--------|--------|-------|--------|--------|
| 0000-  | 0000-  | 9635- | 9635-  | 9999-  |
| 0000   | 0001   | 8904  | 8905   | 9999   |

- a linked list: requires O(n) time, O(n) space



### **Another Solution: Hashing**

- We can do better, with a hash table of size m
- Like an array, but with a function to map the large range into one which we can manage
  - e.g., take the original key, modulo the (relatively small) size of the table, and use that as an index
- Insert (9635-8904, Jens) into a hash table with, say, five slots (m = 5)
  - $\bullet$  96358904 mod 5 = 4

| (null) | (null) | (null) | (null) | Jens |
|--------|--------|--------|--------|------|
| 0      | 1      | 2      | 3      | 4    |

• O(1) expected time, O(n+m) space

#### **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

#### **Hash Functions**

- Need to choose a good hash function (HF)
  - quick to compute
  - distributes keys uniformly throughout the table
- How to deal with hashing non-integer keys:
  - find some way of turning the keys into integers
    - in our example, remove the hyphen in 9635-8904 to get 96358904
    - for a string, add up the ASCII values of the characters of your string (e.g., java.lang.String.hashCode())
  - then use a standard hash function on the integers

#### **HF: Division Method**

- Use the remainder:  $h(k) = k \mod m$ 
  - -k is the key, m the size of the table
- Need to choose m
- $m = b^e$  (bad)
  - if m is a power of 2, h(k) gives the e least significant bits of k
  - all keys with the same ending go to the same place
- m prime (good)
  - helps ensure uniform distribution
  - primes not too close to exact powers of 2 are best

#### **HF: Division Method/2**

- Example 1
  - hash table for n = 2000 character strings, ok to investigate an average of three attempts/search
  - -m = 701
    - a prime near 2000/3
    - but not near any power of 2
- Further examples
  - -m = 13
    - h(3) = 3
    - h(12) = 12
    - h(13) = 0

#### **HF: Multiplication Method**

- Use  $h(k) = |m(k A \mod 1)|$ 
  - k is the key
  - m the size of the table
  - -A is a constant 1/2 < A < 1
  - (k A mod 1): the fractional part of k A
- The steps involved
  - map  $0...k_{max}$  into  $0...k_{max}A$
  - take the fractional part (mod 1)
  - map it into 0...*m*-1

#### **HF: Multiplication Method/2**

- Choice of m and A
  - Value of m is not critical: typically, for some p use  $m = 2^p$
  - Optimal choice of A depends
     on the characteristics of the data
    - Knuth says use

$$A = \frac{\sqrt{5} - 1}{2}$$

#### **HF: Multiplication Method/3**

- Assume 7-bit binary keys,  $0 \le k < 128$
- $m = 64 = 2^6$ , p = 6
- A = 89/128 = .1011001, k = 107 = 1101011
- Computation of h(k):

• Thus, h(k) = 25

#### **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

#### **Collisions**

Assume a key is mapped to an already occupied table location

- what to do?

Use a collision handling technique

There are 3 techniques to deal with collisions:

- chaining
- open addressing/linear probing
- open addressing/double hashing

# **Chaining**

Chaining maintains a table of links,

- indexed by the keys,
- to lists of items with the same key



### **Open Addressing**

- All elements are stored in the hash table (can fill up), i.e., n ≤ m
- Each table entry contains either an element or null
- When searching for an element, systematically probe table slots
- Modify hash function to take probe number i as second parameter

h: 
$$U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$$

## **Open Addressing/2**

- Hash function, h, determines
   the sequence of slots examined for a given key
- Probe sequence for a given key k is given by

$$(h(k,0), h(k,1), ..., h(k,m-1)),$$

which is a permutation of (0, 1, ..., m-1)

## **Linear Probing**

```
LinearProbingInsert(k)
  if (table is full) then error
  probe := h(k)
  while (table[probe] occupied) do
     probe := (probe+1) mod m
  table[probe] = k
```

- If the current location is used, try the next table location:
   h(key,i) = (h1(key)+i) mod m
- Lookups walk along the table until the key or an empty slot is found
- Uses less memory than chaining
  - one does not have to store all those links
- Slower than chaining
  - one might have to probe the table for a long time

## **Linear Probing/2**

- Problem "primary clustering": long lines of occupied slots
  - A slot preceded by i full slots has a high probability of getting filled: (i+1)/m
- Alternatives: (quadratic probing,) double hashing
- Example:
  - $-h(k) = k \mod 13$
  - insert keys: 18 41 22 44 59 32 31 73

### **Double Hashing**

Use two hash functions:

```
h(key,i) = (h1(key) + i*h2(key)) \mod m, i = 0,1,...
```

```
DoubleHashingInsert(k)
  if (table is full) then error
  probe := h1(k)
  offset := h2(k)
  while (table[probe] occupied) do
     probe := (probe + offset) mod m
  table[probe] := k
```

Distributes keys much more uniformly than linear probing.

## **Double Hashing/2**

h2(k) must be relative prime to m
to search the entire hash table

- Suppose h2(k) = k\*a and m = w\*a, a > 1

#### Two ways to ensure this:

- -m is power of 2, h2(k) is odd
- -m: prime, h2(k): positive integer < m

#### Example

- $-h1(k) = k \mod 13$ ,  $h2(k) = 8 (k \mod 8)$
- insert keys: 18 41 22 44 59 32 31 73

### **Open Addressing: Delete**

#### Complex to delete from

- A slot may be reached from different points
  - We cannot simply store "NIL": we'd loose the information necessary to retrieve other keys
- Possible solution: mark the deleted slot as "deleted", insert also on "deleted"
  - Drawback: retrieval time no more depending on load factor: potentially lots of "jumps" on "deleted" slots

When deletion is admitted/frequent, then chaining is preferred

### **DSA**, Chapter 7: Overview

- 1. Dictionaries
- 2. Hashing
- 3. Hash Functions
- 4. Collisions
- 5. Performance Analysis

## **Analysis of Hashing**

An element with key k is stored in slot h(k) (instead of slot k without hashing)

The hash function h maps the universe U of keys into the slots of hash table T[0...m-1]

h: 
$$U \rightarrow \{0, 1, ..., m-1\}$$

Assumption: Each key is equally likely to be hashed into any slot (bucket):

simple uniform hashing

Given hash table T with m slots holding n elements, the load factor is defined as  $\alpha = n/m$ 

## **Analysis of Hashing/2**

Assume time to compute h(k) is  $\Theta(1)$ 

To find an element

- using *h*, look up its position in table *T*
- search for the element in the linked list of the hashed slot
- *uniform* hashing yields an average list length of  $\alpha = n/m$
- expected number of elements to be examined is  $\alpha$
- search time is  $O(1+\alpha)$

# **Analysis of Hashing/3**

Assuming the number of hash table slots is proportional to the number of elements in the table

$$n = O(m)$$
  
 $\alpha = n/m = O(m)/m = O(1)$ 

- searching takes constant time on average
- insertion takes O(1) worst-case time
- deletion takes O(1) worst-case time
   (pass the element not key, lists are doubly-linked)

#### **Expected Number of Probes**

- Load factor  $\alpha$  < 1 for probing
- Analysis of probing uses uniform hashing assumption any permutation is equally likely

|          | Unsuccessful            | Successful                                   |
|----------|-------------------------|----------------------------------------------|
| Chaining | $O(1+\alpha)$           | $O(1+\alpha)$                                |
| Probing  | $O(\frac{1}{1-\alpha})$ | $O(\frac{1}{\alpha} \ln \frac{1}{1-\alpha})$ |

- Chaining: 1 ( $\alpha$ =0%), 1.5 ( $\alpha$ =50%), 2 ( $\alpha$ =100%), n ( $\alpha$ =n)
- Probing, unsucc: 1.25 ( $\alpha$ =20%), 2 ( $\alpha$ =50%), 5 ( $\alpha$ =80%), 10 ( $\alpha$ =90%)
- Probing, succ: 0.28 ( $\alpha$ =20%), 1.39 ( $\alpha$ =50%), 2.01 ( $\alpha$ =80%), 2.56 ( $\alpha$ =90%)

# **Expected Number of Probes/2**



## **Summary**

- Hashing is very efficient (not obvious, probability theory).
- Its functionality is limited (printing elements sorted according to key is not supported).
- The size of the hash table may not be easy to determine.
- A hash table is not really a dynamic data structure.

#### Suggested exercises

- Implement a Hash Table with the different techniques
- With paper & pencil, draw the evolution of a hash table when inserting, deleting and searching for new element, with the different techniques
- See also exercises of CLRS

#### **Next Part**

- Graphs:
  - Representation in memory
  - Breadth-first search
  - Depth-first search
  - Topological sort