Data Structures and Algorithms Chapter 4

Werner Nutt

Acknowledgments

- The course follows the book "Introduction to Algorithms", by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.
- These slides are based on those developed by Michael Böhlen for this course.

(See http://www.inf.unibz.it/dis/teaching/DSA/)

 The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course

(See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
 - complete binary trees
 - heap data structure
- Quicksort
 - a popular algorithm
 - very fast on average

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
 - Complete binary trees
 - Heap data structure
- Quicksort
 - a popular algorithm
 - very fast on average

Why Sorting?

- "When in doubt, sort" –
 one of the principles of algorithm design.
- Sorting is used as a subroutine in many algorithms:
 - Searching in databases:
 we can do binary search on sorted data
 - Element uniqueness, duplicate elimination
 - A large number of computer graphics and computational geometry problems

Why Sorting?/2

- Sorting algorithms represent different algorithm design techniques.
- The lower bound for sorting of $\Omega(n \log n)$ is used to prove lower bounds of other problems.

Sorting Algorithms so Far

- Insertion sort, selection sort, bubble sort
 - Worst-case running time $\Theta(n^2)$
 - In-place
- Merge sort
 - Worst-case running time $\Theta(n \log n)$
 - Requires additional memory $\Theta(n)$

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
 - Complete binary trees
 - Heap data structure
- Quicksort
 - a popular algorithm
 - very fast on average

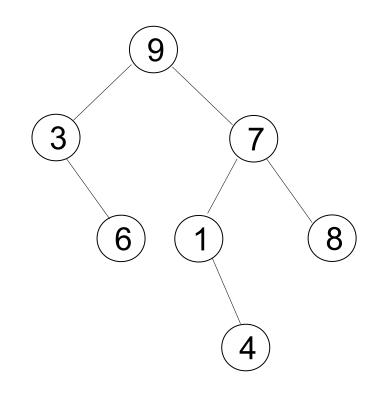
Selection Sort

```
SelectionSort(A[1..n]):
    for i := 1 to n-1
A:     Find the smallest element among A[i..n]
B:     Exchange it with A[i]
```

- A takes $\Theta(n)$ and B takes $\Theta(1)$: $\Theta(n^2)$ in total
- Idea for improvement: smart data structure to
 - do A and B in $\Theta(1)$
 - spend O(log n) time per iteration to maintain the data structure
 - get a total running time of O(n log n)

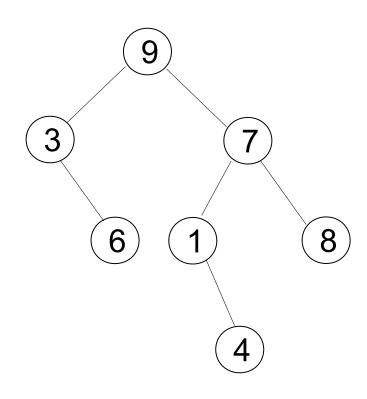
Binary Trees

- Each node may have a left and right child
 - The left child of 7 is 1
 - The right child of 7 is 8
 - 3 has no left child
 - 6 has no children
- Each node has at most one parent
 - 1 is the parent of 4
- The root has no parent
 - 9 is the root
- A leaf has no children
 - 6, 4 and 8 are leafs



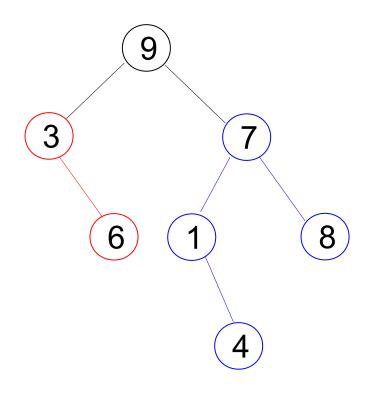
Binary Trees/2

- The depth (or level) of a node x is the length of the path from the root to x
 - The depth of 1 is 2
 - The depth of 9 is 0
- The height of a node x is the length of the longest path from x to a leaf
 - The height of 7 is 2
- The height of a tree is the height of its root
 - The height of the tree is 3



Binary Trees/3

- The right subtree of a node x is the tree rooted at the right child of x
 - The right subtree of 9 is the tree shown in blue
- The left subtree of a node x is the tree rooted at the left child of x
 - The left subtree of 9 is the tree shown in red



Complete Binary Trees

- A complete binary tree is a binary tree where
 - all leaves have the same depth
 - all internal (non-leaf) nodes have two children
- A nearly complete binary tree is a binary tree where
 - the depth of two leaves differs by at most 1
 - all leaves with the maximal depth are as far left as possible

Heaps

- A binary tree is a binary heap iff
 - it is a nearly complete binary tree
 - each node is greater than or equal to all its children
- The properties of a binary heap allow
 - an efficient storage as an array (because it is a nearly complete binary tree)
 - a fast sorting (because of the organization of the values)

Heaps/2

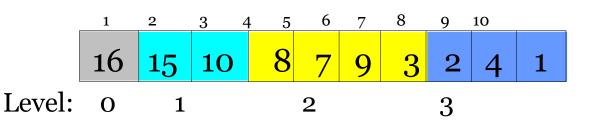
Heap property
A[Parent(i)] ≥ A[i]

Parent(i) return |i/2|

Left(i) return 2i

Right(i) return 2i+1





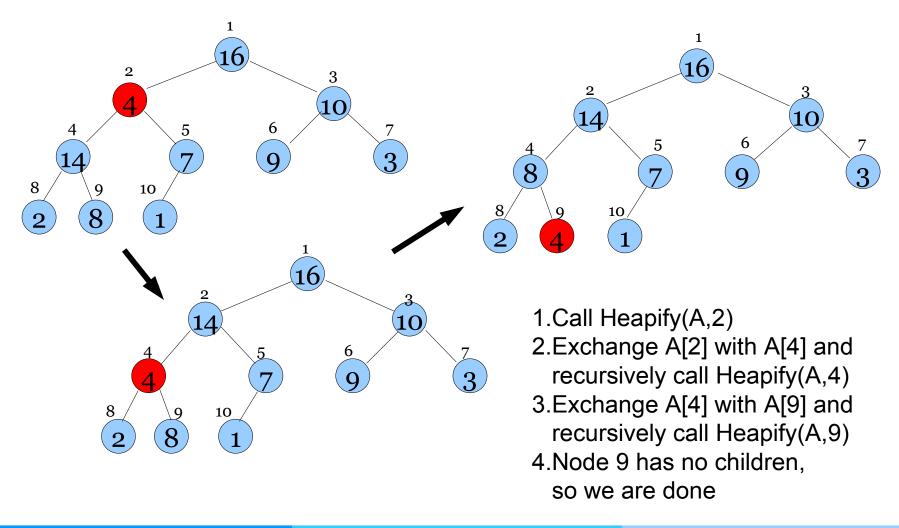
Heaps/3

- Notice the implicit tree links in the array: children of node i are 2i and 2i+1
- The heap data structure can be used to implement a fast sorting algorithm.
- The basic elements are
 - Heapify: reconstructs a heap after an element was modified
 - BuildHeap: constructs a heap from an array
 - HeapSort: the sorting algorithm

Heapify

- Input: index i in array A, number n of elements
- Binary trees rooted at Left(i) and Right(i) are heaps
- A[i] might be smaller than its children, thus violating the heap property.
- Heapify makes A a heap by moving A[i] down the heap until the heap property is satisfied again.

Heapify Example



Heapify Algorithm

```
Heapify (A, i, n)
  1 := 2*i; // 1 := Left(i)
  r := 2*i+1; // r := Right(i)
  if 1 <= n and A[1] > A[i]
    then maxpos := 1
    else maxpos := i
  if r \le n and A[r] > A[max]
    maxpos := r
  if max != i
    swap(A, i, maxpos)
    Heapify (A, maxpos, n)
```

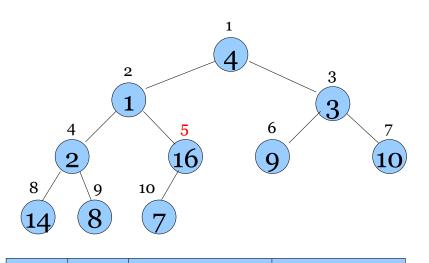
Heapify: Running Time

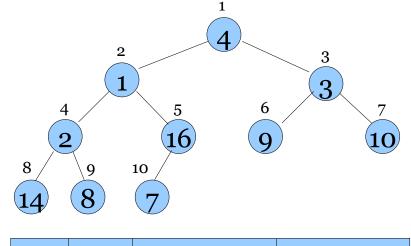
The running time of Heapify on a subtree of size *n* rooted at *i* includes the time to

- determine relationship between elements: $\Theta(1)$
- run Heapify on a subtree rooted at one of the children of i
 - 2n/3 is the worst-case size of this subtree (half filled bottom level)
 - $T(n) \le T(2n/3) + \Theta(1)$ implies $T(n) = O(\log n)$
- Alternatively
 - Running time on a node of height h: $O(h) = O(\log n)$

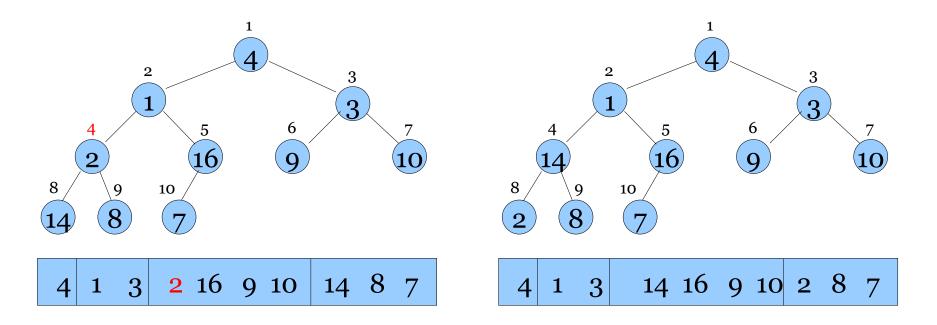
- Convert an array A[1...n] into a heap
- Notice that the elements in the subarray
 A[(|n/2| + 1)...n] are 1-element heaps to begin with

```
BuildHeap(A)
  for i := [n/2] to 1 do
    Heapify(A, i, n)
```

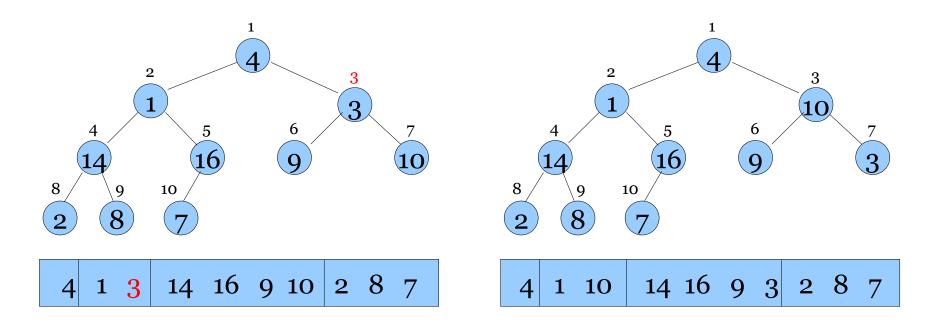




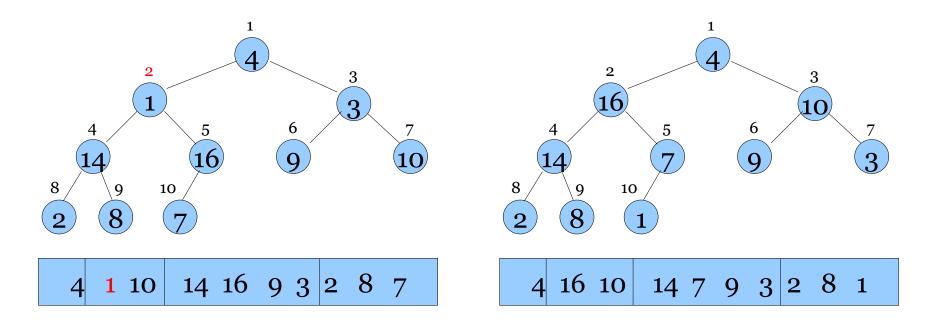
- 4 1 3 2 16 9 10 14 8 7
- Heapify(A, 7, 10)
- Heapify(A, 6, 10)
- Heapify(A, 5, 10)



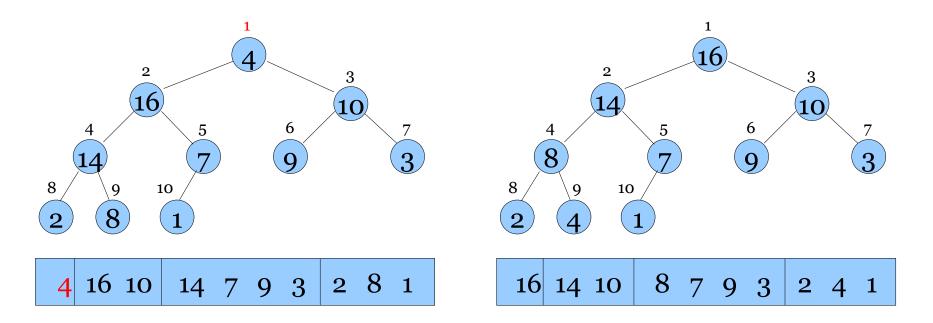
• Heapify(A, 4, 10)



• Heapify(A, 3, 10)



Heapify(A, 2, 10)



• Heapify(A, 1, 10)

Building a Heap: Analysis

- Correctness: induction on i,
 all trees rooted at m > i are heaps
- Running time: n calls to Heapify
 = n O(log n) = O(n log n)
- Non-tight bound, but good enough for an overall O(n log n) bound for Heapsort.
- Intuition for a tight bound:
 - most of the time Heapify works on less than n element heaps

Building a Heap: Analysis/2

- Tight bound:
 - An n element heap has height log n.
 - The heap has n/2^{h+1} nodes of height h.
 - Cost for one call of Heapify is O(h).

$$T(n) = \sum_{h=0}^{\log n} \frac{n}{2^{h+1}} O(h) = O(n \sum_{h=0}^{\log n} \frac{h}{2^h})$$

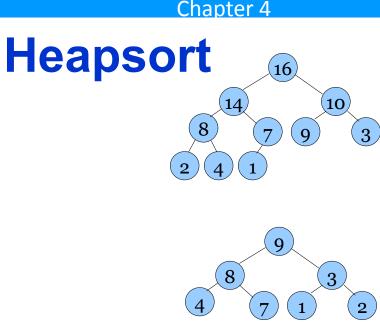
Math:

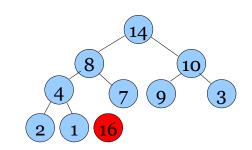
$$\sum_{k=0}^{\infty} k x^k = \frac{x}{(1-x)^2} \qquad \sum_{k=0}^{\infty} \frac{k}{x^k} = \sum_{k=0}^{\infty} k (1/x)^k = \frac{1/x}{(1-1/x)^2}$$

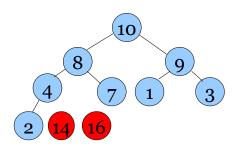
$$T(n) = O(n \sum_{h=0}^{\log n} \frac{h}{2^h}) = O(n \frac{1/2}{(1-1/2)^2}) = O(n)$$

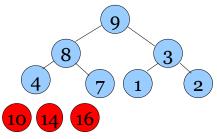
HeapSort

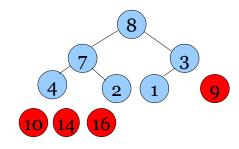
The total running time of Heapsort is $O(n) + n * O(\log n) = O(n \log n)$

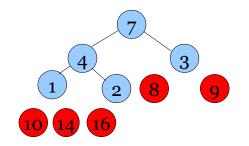


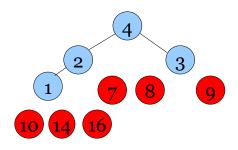


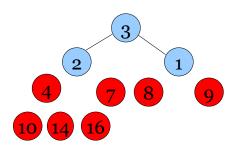


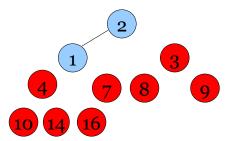


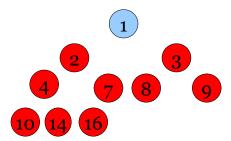












1 2 3 4 7 8 9 10 14 16

Heapsort: Summary

- Heapsort uses a heap data structure to improve selection sort and make the running time asymptotically optimal
- Running time is O(n log n) like Merge Sort, but unlike selection, insertion, or bubble sorts
- Sorts in place like insertion, selection or bubble sorts, but unlike merge sort
- The heap data structure is also used for other things than sorting

DSA, Chapter 4: Overview

- About sorting algorithms
- Heapsort
 - Complete binary trees
 - Heap data structure
- Quicksort
 - a popular algorithm
 - very fast on average

Quicksort

Characteristics

- Sorts in place
 (like insertion sort, but unlike merge sort)
 i.e., does not require an additional array
- Very practical, average sort performance $O(n \log n)$ (with small constant factors), but worst case $O(n^2)$

Quicksort: The Principle

When applying the Divide&Conquer principle to sorting, we obtain the following schema for an algorithm:

- Divide array segment A[I..r] into two subsegments, say A[I..m] and A[m+1,r]
- Conquer: sort each subsegment by a recursive call
- Combine the sorted subsegments into a sorted version of the original segment A[I..r]

Merge Sort takes an extreme approach in that

- no work is spent on the division
- a lot of work is spent on the combination

What does an algorithm look like where no work is spent on the combination?

Quicksort: The Principle/2

If no work is spent on the combination of the sorted segments, then, after the recursive call,

- all elements in the left subsegment A[I..m] must be
 - ≤ all elements in the right subsegment A[m+1..r]

However, the recursive call can only have sorted the segments!

We conclude that the division must have partitioned A[I..r] into

- a subsegment with small elements A[l..m]
- a subsegment with big elements A[m+1..r]

How can we write code for such a partition algorithm?

Quicksort – the Principle

- To understand quick sort, let's look at a high-level description of the algorithm.
- A divide-and-conquer algorithm
 - Divide: partition array into 2 subarrays such that elements in the lower part
 ≤ elements in the higher part.
 - Conquer: recursively sort the 2 subarrays
 - Combine: trivial since sorting is done in place

Quick Sort Algorithm: Overview

Partition divides the segment A[I..r] into

- a segment of "little elements" A[l..m-1]
- a segment of "big elements" A[m+1..r],
 with A[m] in the middle between the two

Partition

```
INPUT: A[1..n] - an array of integers
       1, r - integers satisfying 1 \le 1 < r \le n
OUTPUT: m - an integer with 1≤m≤r
        a permutation of A[l..r] such that
        A[i] < A[m] for all i with 1 \le i < m
        A[m] \le A[i] for all i with m < i \le r
int Partition (A, l, r)
    p := A[m]; // pivot, used for the split
    ll := l-1; // last of the little ones
    for bu := 1 to r-1 do
            // bu is the beginning of the unknown area
        if A[bu] < p
            then swap (A, 11+1, bu); 11++;
            // all elements 
    swap(A,ll+1,m)
            // move the pivot into the middle position
```

Partition: Loop Invariant

This version of partition has the following loop invariant

- A[i] < p, for all i with I ≤ i ≤ II(all little ones are < p)
- $A[i] \ge p$ for all I with II < i < bu (all big ones are $\ge p$).

Clearly,

- this holds at the beginning of the execution
- this is maintained during the loop
- the loop terminates.

At the end of the loop, A[I..II] comprises the little ones, and A[II+1..r-1] comprises the big ones.

Since p = A[r] is a big one, the postcondition holds after the swap of A[II+1] and A[p].

Partitioning from the Endpoints

There is another approach to partitioning, due to Tony Hoare, the inventor of Quicksort.

As before, we choose p:=A[r] as the pivot.

Then repeatedly,

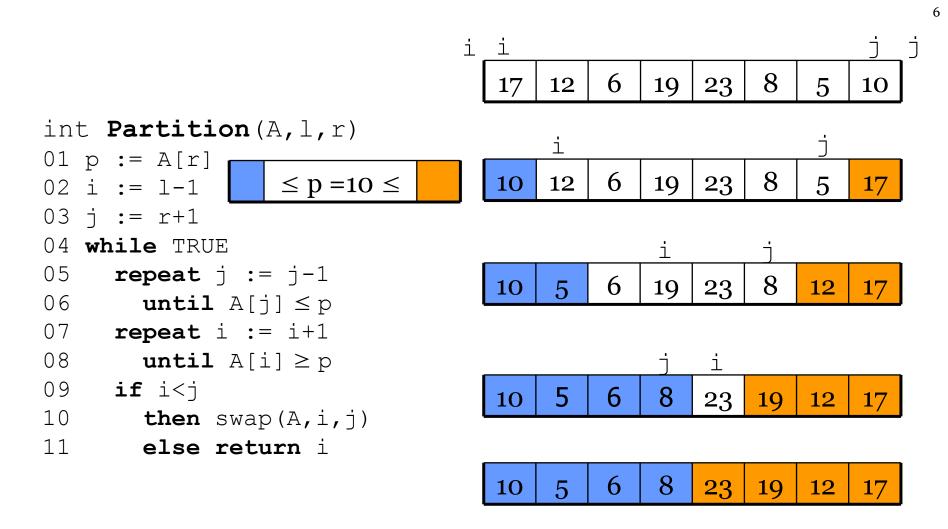
- walk from right to left until you find an element ≤ p
- walk from left to right until you find an element ≥ p
- swap those elements.

Note that in this approach, we have no control where p ends up. Therefore, Partition returns an index m such that

 $A[i] \le A[j]$, for all i, j with $1 \le i \le m$ and $m+1 \le j \le r$

Consequently, Quicksort(A,I,r) launches two recursive calls Quicksort(A,I,m) and Quicksort(A,m+1,r)

Partitioning from the Endpoints/2



Quicksort with Partitioning from the Endpoints

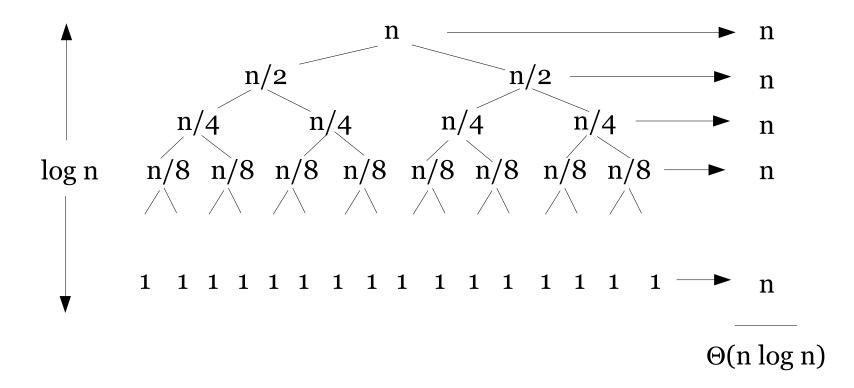
Note the different parameters of the first recursive call!

Analysis of Quicksort

- Assume that all input elements are distinct
- The running time depends on the distribution of splits

Best Case

• If we are lucky, Partition splits the array evenly: $T(n) = 2 T(n/2) + \Theta(n)$



Worst Case

- What is the worst case?
- One side of the partition has one element

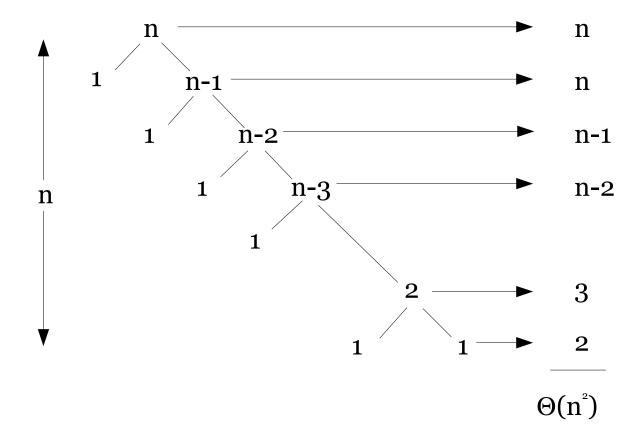
•
$$T(n) = T(n-1) + T(1) + \Theta(n)$$

= $T(n-1) + 0 + \Theta(n)$
= $\sum_{n=0}^{\infty} \Theta(k)$

$$= \Theta(\sum_{k=1}^{n} k)$$

$$= \Theta(n^2)$$

Worst Case/2

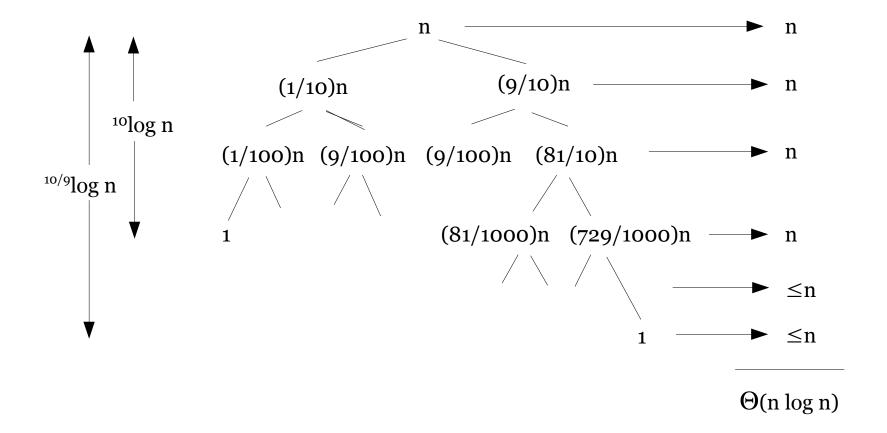


Worst Case/3

- When does the worst case appear?
 - => one of the partition segments is empty
 - input is sorted
 - input is reversely sorted
- Similar to the worst case of Insertion Sort (reverse order, all elements have to be moved)
- But sorted input yields the best case for insertion sort

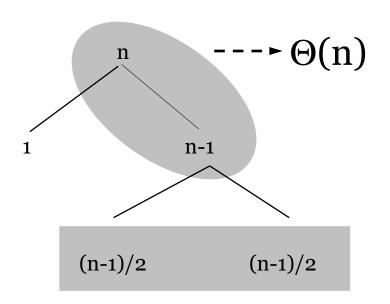
Analysis of Quicksort

Suppose the split is 1/10:9/10



An Average Case Scenario

Suppose, we alternate lucky and unlucky cases to get an average behavior

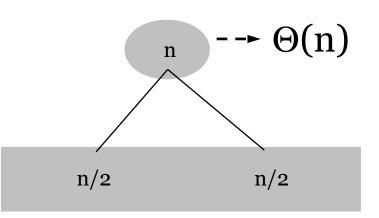


$$L(n) = 2U(n/2) + \Theta(n) \text{ lucky}$$

$$U(n) = L(n-1) + \Theta(n) \text{ unlucky}$$
we consequently get
$$L(n) = 2(L(n/2 - 1) + \Theta(n)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \log n)$$



An Average Case Scenario/2

- How can we make sure that we are usually lucky?
 - Partition around the "middle" (n/2th) element?
 - Partition around a random element (works well in practice)
- Randomized algorithm
 - running time is independent of the input ordering
 - no specific input triggers worst-case behavior
 - the worst-case is only determined by the output of the random-number generator

Randomized Quicksort

- Assume all elements are distinct
- Partition around a random element
- Consequently, all splits

```
1:n-1,
2:n-2,
...,
n-1:1
are equally likely with probability 1/n.
```

 Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity.

Randomized Quicksort/2

```
int RandomizedPartition(A,1,r)
  i := Random(l,r)
  exchange A[r] and A[i]
  return Partition(A,1,r)

RandomizedQuicksort(A,1,r)
  if l < r then
    m := RandomizedPartition(A,1,r)
    RandomizedQuicksort(A,1,m-1)
    RandomizedQuicksort(A,n+1,r)</pre>
```

Summary

- Heapsort
 - same idea as Max sort, but heap data structure helps to find the maximum quickly
 - a heap is a nearly complete binary tree,
 which here is implemented in an array
 - worst case is n log n
- Quicksort
 - partition-based: extreme case of D&C,
 no work is spent on combining results
 - popular, behind Unix "sort" command
 - very fast on average
 - worst case performance is quadratic

Comparison of Sorting Algorithms

- Running time in seconds, n=2048
- Absolute values are not important; compare values with each other
- Relate values to asymptotic running time (n log n, n²)

	ordered	random	inverse
Insertion	0.22	50.74	103.8
Selection	58.18	58.34	73.46
Bubble	80.18	128.84	178.66
Heap	2.32	2.22	2.12
Quick	0.72	1.22	0.76

Next Chapter

- Dynamic data structures
 - Pointers
 - Lists, trees
- Abstract data types (ADTs)
 - Definition of ADTs
 - Common ADTs