
Data Structures and Algorithms Spring-Summer 2014/15

Lab 11 Alessandro Artale, Werner Nutt,
Ognjen Savković, Francesco Sportelli

11. Algorithms for Trees

In this lab, you are going to develop algorithms for trees. Whenever, you work on
an algorithm, proceed by the following steps:

1. Write down in words your idea for the algorithm.

2. Write up your algorithm in pseudocode.

3. Determine the asymptotic complexity of your algorithm.

1. Number of Nodes in a Tree

Develop code for a function

int numberOfNodes(),

which returns the number of non-null nodes in the current tree.

Hints: Solving this problem recursively may be the best approach. If you want to
do that, you will have to define an auxiliary function.

2. Depth of a Tree

Develop code for a function

int depth(),

which returns the depth of the current tree. Remember that the depth of a tree is
the length of the longest path from the root to a (non-null) leaf.

Hint: Note that we have not defined the depth of an empty tree, where the root is
null. What would be a reasonable extension of the definition so that it covers also
this case?



3. Breadth-first Traversal of a Tree

In the lecture, you have seen how to traverse a tree in preorder, inorder, and pos-
torder.
An alternate technique to traverse a tree proceeds by levels, where the level of a
node is defined as the length of the path from the root to that node. An algorithm
for such a level-order traversal visits first all nodes a level 0 (i.e., the root), then
those at level 1 (i.e., the children of the root), after that those at level 2 (i.e., the
grandchildren of the root), and so on. Level-order traversal is also called breadth-
first traversal.
Develop a method

void breadthFirstTraversal(),

that prints out the keys of a tree in the order of a breadth-first traversal.

Hint: Preorder, inorder, and postorder traversal can easily be expressed using
recursion, which is executed by the Java engine using a stack with all the pending
function calls. The reason is that children of a node are processed according to
“last in, first out” queuing policy. What is the queuing policy for breadth-first
search? How can one implement it?

4. Serialization of Binary Search Trees

Data structures with pointers are often difficult to store in a file. By a serialization
of such a structure we understand a format that can easily be written to a file and
easily be used to rebuild the original structure. Here, we want to serialize binary
search trees (BSTs) that contain integer keys.
Clearly, if we are given an arbitrary file containing a sequence of integers, then
we can construct a BST by starting with an empty tree and inserting the integers
one after the other according to the order on integers.

Task: In this exercise, you are asked to develop a method for writing the keys in
a BST T on a file F in such a way that by reading the integers in F and inserting
them into an empty tree the original tree T is reconstructed.


