Data Structures and Algorithms Spring-Summer 2014/15

Assignment 4 Alessandro Artale, Werner Nutt,
Ognjen Savkovi¢, Francesco Sportelli

Loop Invariants and
Performance of Sorting Algorithms

1. Loop Invariants

In this exercise we want to review loop invariants and how they can be used to
understand algorithms.

Below is pseudocode for an algorithm that is supposed to check whether an array
is sorted.

Input: Array A[l..n] of integers
Output: TRUE if the array is sorted, FALSE otherwise

CHECKSORTEDNESS(A):

n:=A.length

i:=1

while i<n and A[i]J<=A[i+1] do
1++

if i=n
then return TRUE
else return FALSE

Our goal in this exercise is to show that CHECKSORTEDNESS does in fact check
whether an array is sorted.

1. Write down a formal definition of the statement, “Array A is sorted.”

2. State a loop invariant for the while loop of CheckSortedness by which you
can show that algorithm in fact is checking sortedness.

3. Give arguments that your loop invariant holds when the algorithm reaches
the while loop for the first time (initialization).

4. Give arguments that your loop invariant is maintained by each execution of
the loop (maintenance).

5. Give arguments that the loop terminates (termination).

6. Give arguments that the answer TRUE is returned only if the array was
sorted, and FALSE only if it was not sorted.

(12 Points)

2. Merging Two Sorted Array Segments

We have seen that the Merge Sort algorithm can sort an array of length n in time
O(nlogn). It relies on a subroutine MERGE with the following specification:

MERGE(A, [, m, 1)
Input: Array A[l..n| of integers;

positive integers [, m, and r,with 1 <[<m <r <n
Precondition: the array segments A[l..m] and A[m + 1..r| are sorted
Postcondition: the entire segment A[l..r] is sorted.

Your task is to design an algorithm for this merge operation.

1. Describe your overall idea for the algorithm. Explain which control struc-
ture the algorithm will have and how you choose the boundaries for loops.

2. Write up pseudocode for MERGE that follows this idea.

Hint: You need extra space for the merge operation. Either you copy the two
segments into new arrays and then merge the new arrays into the target segment,
or you merge the source segments into a new array and copy that array into the
target segment.

(8 Points)

3. Comparison of Sorting Algorithms

In this exercise you are asked to empirically compare two sorting algorithms, one
with a worst-case running time of O(n?) and another one with a worst-case run-
ning time of O(nlogn). In particular, we would like to know for which length of
input arrays the second algorithm is faster than the first, depending on the size of
the data in the arrays.

1. Write a Java program implementing the Insertion Sort algorithm.
2. Write a Java program implementing the Merge Sort algorithm.
3. Compare the performance of the two algorithms:

(a) Write code that generates a random array A, then runs each algorithm
on A, and records the time.

(b) Repeat this for several arrays of the same size, still recording the run-
ning times.

(c) Gradually increase the size of the arrays, until you see that one algo-
rithm is consistently faster than the other.

Is the theoretical analysis confirmed by your experiments? For which array
size is Merge Sort faster than Insertion Sort?

(10 Points)

Please, follow the “Instructions for Submitting Course Work” on the Web page
with the assignments, when preparing your coursework.

Also, include name, student ID, code of your lab group (A, B, or C), and email
address in your submission.

Submission: Until Mon, 13 April 2015, 11:55 pm, to

dsa-submissions AT inf DOT unibz DOT it.

http://www.inf.unibz.it/~nutt/Teaching/DSA1415/DSAAssignments/instructions.pdf

