Data Structures and Algorithms
Chapter 1

Werner Nutt
Acknowledgments

- The course follows the book “Introduction to Algorithms”, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples displayed in these slides are taken from their book.

- These slides are based on those developed by Michael Böhlen for this course.

 (See http://www.inf.unibz.it/dis/teaching/DSA/)

- The slides also include a number of additions made by Roberto Sebastiani and Kurt Ranalter when they taught later editions of this course.

 (See http://disi.unitn.it/~rseba/DIDATTICA/dsa2011_BZ//)
DSA, Chapter 1: Overview

• Introduction, syllabus, organisation

• Algorithms

• Recursion (principle, trace, factorial, Fibonacci)

• Sorting (bubble, insertion, selection)
DSA, Chapter 1:

- Introduction, syllabus, organisation
- Algorithms
- Recursion (principle, trace, factorial, Fibonacci)
- Sorting (bubble, insertion, selection)
Learning Outcomes

The main things we will learn in this course:

• To *think algorithmically* and get the spirit of how algorithms are designed

• To get to know a *toolbox* of *classical* algorithms

• To learn a number of algorithm design *techniques* (such as divide-and-conquer)

• To analyze (in a precise and formal way) the *efficiency* and the *correctness* of algorithms.
Syllabus

1. Introduction, recursion (chap 1 in CLRS)
2. Correctness and complexity of algorithms (2, 3)
3. Divide and conquer, recurrences (4)
4. Heapsort, Quicksort (1)
5. Dynamic data structures, abstract data types (10)
6. Binary search trees, red-black trees (12, 13)
7. Hash tables (11)
8. Dynamic programming (15)
9. Graphs: Principles and graph traversal (22)
10. Minimum spanning tree and shortest path (23, 24)
Literature

(See http://mitpress.mit.edu/algorithms/)

Course is based on this book
Other Literature

Kurt Mehlhorn and Peter Sanders
Algorithms and Data Structures - The Basic Toolbox

Offers alternate presentation of topics of the course

Free download from

Course Organization

• Lectures: Wed 10:30-12:30, Fri 10:30-12:30

• Labs (provisional, starting next week)
 – Mouna Kacimi, Mouna.Kacimi@unibz.it
 Tue 14:00-16:00
 – Camilo Thorne, cthorne@inf.unibz.it
 Tue 14:00-16:00

• Home page:
 http://www.inf.unibz.it/~nutt/Teaching/DSA1314/
Assignments

The assignments are a crucial part of the course

- **Each week** an assignment has to be solved
- The schedule for the publication and the handing in of the assignments will be announced at the next lecture.
- A number of assignments include **programming tasks**. It is strongly recommended that you implement and run all programming exercises.
- Assignments will be **marked**. The assignment mark will count towards the course mark.
- Any attempt at **plagiarism** (copying from the web or copying from other students) leads to a **0 mark** for all assignments.
Assignments, Midterm Exam, Final Exam, and Course Mark

• There will be
 – one written exam at the end of the course
 – one midterm exam around the middle of the course
 – assignments

• To pass the course, one has to pass the written exam.

• Students who do not submit exercises or do not take part in the midterm (or fail the midterm) will be marked on the final exam alone.

• For students who submit all assignments, and take part in the midterm, the final mark will be a weighted average
 50% exam mark + 10% midterm
 + 40% assignment mark
Assignments, Midterm Exam, Final Exam, and Course Mark

• If students submit fewer assignments, or do not take part in the midterm, the percentage will be lower.
• Assignments for which the mark is lower than the mark of the written exam will not be considered.
• Similarly, the midterm will not be considered if the mark is lower than the mark of the final exam.
• The midterm and assignment marks apply to three exam sessions.
General Remarks

• Algorithms are first designed on paper … and later keyed in on the computer.

• The most important thing is to be simple and precise.

• During lectures:
 – Interaction is welcome; ask questions (I will ask you anyway 😊)
 – Additional explanations and examples if desired
 – Speed up/slow down the progress
DSA, Chapter 1:

- Introduction, syllabus, organisation
- Algorithms
- Recursion (principle, trace, factorial, Fibonacci)
- Sorting (bubble, insertion, selection)
What are Algorithms About?

Solving problems in everyday life
- **Travel** from Bolzano to Munich
- **Cook** Spaghetti alla Bolognese (I know, not in Italy, …)
- **Register** for a Bachelor thesis at FUB

For all these problems, there are
- **instructions**
- **recipes**
- **procedures**,

which describe a complex operation in terms of
- **elementary operations** ("beat well …")
- **control structures and conditions** ("… until fluffy")
Algorithms

Problems involving numbers, strings, mathematical objects:

- for **two numbers**, determine their **sum**, **product**, …
- for **two numbers**, find their **greatest common divisor**
- for a **sequence** of strings,
 find an alphabetically **sorted permutation** of the sequence
- for two **arithmetic expressions**, find out if they are **equivalent**
- for a **program** in Java,
 find an equivalent program in **byte code**
- on a **map**, find for a given **house** the **closest bus stop**

We call instructions, recipes, for such problems **algorithms**

What have algorithms in common with recipes? How are they different?
History

• **First algorithm:** Euclidean Algorithm, greatest common divisor, 400-300 B.C.

• **Name:** Persian mathematician **Mohammed al-Khowarizmi,** in Latin became “Algorismus”

 Kitāb al-Dschamʿ wa-l-tafrīq bi-ḥisāb al-Hind =

 = Book on connecting and taking apart in the calculation of India

• **19th century**
 – Charles Babbage: Difference and Analytical Engine
 – Ada Lovelace: Program for Bernoulli numbers

• **20th century**
 – Alan Turing, Alonzo Church: formal models computation
 – John von Neumann: architecture of modern computers
Data Structures, Algorithms, and Programs

• Data structure
 – Organization of data to solve the problem at hand

• Algorithm
 – Outline, the essence of a computational procedure, step-by-step instructions

• Program
 – implementation of an algorithm in some programming language
Overall Picture

Using a computer to help solve problems:
• Precisely specifying the problem
• Designing programs
 – architecture
 – algorithms
• Writing programs
• Verifying (testing) programs

Data Structure and Algorithm Design Goals

Correctness
Efficiency

Implementation Goals

Robustness
Adaptability
Reusability
This course is **not** about:

- Programming languages
- Computer architecture
- Software architecture
- SW design and implementation principles

We will only touch upon the theory of complexity and computability.
Algorithmic Problem

There is an infinite number of possible input *instances* satisfying the specification.

For example: A sorted, non-decreasing sequence of natural numbers, on nonzero, finite length:

1, 20, 908, 909, 100000, 1000000000.
Algorithmic Solution

- Algorithm describes actions on the input instance
- There may be many correct algorithms for the same algorithmic problem.
Definition

An **algorithm** is a sequence of *unambiguous* instructions for solving a problem, i.e.,

- for obtaining a *required output*
- for any *legitimate input*

in a finite amount of time.

→ This presumes a mechanism to execute the algorithm

Properties of algorithms:
- Correctness, Termination, (Non-)Determinism, Run Time, …
How to Develop an Algorithm

• Precisely define the problem. Precisely specify the input and output. Consider all cases.

• Come up with a simple plan to solve the problem at hand.
 – The plan is independent of a (programming) language
 – The precise problem specification influences the plan.

• Turn the plan into an implementation
 – The problem representation (data structure) influences the implementation
Example 1: Searching

INPUT
- A - (un)sorted sequence of \(n \) \((n > 0)\) numbers
- \(q \) - a single number

\[a_1, a_2, a_3, \ldots, a_n ; \ q \]

OUTPUT
- index of number \(q \) in sequence \(A \), or NIL

\[j \]

\[2 \ 5 \ 6 \ 10 \ 11; \ 5 \]

\[2 \ 5 \ 6 \ 10 \ 11; \ 9 \]

\[2 \]

\[NIL \]
search1

INPUT: A[1..n] (un)sorted array of integers, q an integer.
OUTPUT: index j such that A[j]=q or NIL if A[j] ≠ q for all j (1 ≤ j ≤ n)

j := 1
while j ≤ n and A[j] ≠ q do j++
if j ≤ n then return j
else return NIL

• The code is written in *pseudo-code* and INPUT and OUTPUT of the algorithm are specified.
• The algorithm uses a *brute-force* technique, i.e., scans the input sequentially.
Preconditions, Postconditions

Specify preconditions and postconditions of algorithms:

Precondition:
• what does the algorithm get as input?

Postcondition:
• what does the algorithm produce as output?
• … how does this relate to the input?

Make sure you have considered the special cases:
• empty set, number 0, pointer nil, …
Pseudo-code

Like Java, Pascal, C, or any other imperative language

- Control structures:

 \(\text{if then else, while, and for loops} \)

- Assignment: \(:= \)

- Array element access: \(A[i] \)

- Access to element of composite type (record or object):

 \(A.b \)

\textit{CLRS uses b[A]}
Searching, Java Solution

```java
import java.io.*;

class search {
    static final int n = 5;
    static int j, q;
    static int a[] = { 11, 1, 4, -3, 22 };

    public static void main(String args[])
            {
        j = 0; q = 22;
        while (j < n && a[j] != q) { j++; }
        if (j < n) { System.out.println(j); }
        else { System.out.println("NIL"); }
    }
}
```
#include <stdio.h>
#define n 5

int j, q;
int a[n] = { 11, 1, 4, -3, 22 };
int main() {
 j = 0; q = -2;
 while (j < n && a[j] != q) { j++; }
 if (j < n) { printf("%d\n", j); }
 else { printf("NIL\n"); }
}

// compilation: gcc -o search search.c
// execution: ./search
Searching/3, search2

Another idea:

Run through the array
and set a pointer if the value is found.

search2

INPUT: A[1..n] (un)sorted array of integers, q an integer.
OUTPUT: index j such that A[j]=q or NIL if A[j] ≠ q for all j (1 ≤ j ≤ n)

ptr := NIL;
for j := 1 to n do
 if a[j] = q then ptr := j
return ptr;

Does it work?
search1 vs search2

Are the solutions equivalent?
• No!

Can one construct an example such that, say,
• search1 returns 3
• search2 returns 7?

But both solutions satisfy the specification (or don’t they?)
Searching/4, search3

An third idea:

Run through the array and \textbf{return} the index of the value in the array.

search3

\textit{INPUT}: A[1..n] (un)sorted array of integers, \(q \) an integer.
\textit{OUTPUT}: index \(j \) such that \(A[j] = q \) or \textit{NIL} if \(A[j] \neq q \) for all \(j \) (1 \(\leq j \leq n \))

\begin{verbatim}
for j := 1 to n do
 if a[j] = q then return j
return NIL
\end{verbatim}
Comparison of Solutions

Metaphor: shopping behavior when buying a beer:

- **search1**: scan products; stop as soon as a beer is found and go to the exit.

- **search2**: scan products until you get to the exit; if during the process you find a beer, put it into the basket (instead of the previous one, if any).

- **search3**: scan products; stop as soon as a beer is found and exit through next window.
Comparison of Solutions/2

• **search1** and **search3** return *the same result* (index of the *first occurrence* of the search value)

• **search2** returns the index of the *last occurrence* of the search value

• **search3** does not finish the loop (as a general rule, you better avoid this)
Beware: Array Indexes in Java/C/C++

• In pseudo-code, array indexes range from 1 to length.
• In Java/C/C++, array indexes range from 0 to length-1.
• Examples:
 – Pseudo-code
    ```python
    for j := 1 to n do
    ```
 Java:
    ```java
    for (j=0; j < a.length; j++) { ... }
    ```
 – Pseudo-code
    ```python
    for j := n to 2 do
    ```
 Java:
    ```java
    for (j=a.length-1; j >= 1; j--) { ... }
    ```
Suggested Exercises

• Implement the three variants of search (with input and output of arrays)
 – Create random arrays for different lengths
 – Compare the results
 – Add a counter for the number of cycles and return it, compare the result

• Implement them to scan the array in reverse order
DSA, Chapter 1:

- Introduction, syllabus, organisation
- Algorithms
- Recursion (principle, trace, factorial, Fibonacci)
- Sorting (bubble, insertion, selection)
Recursion

An object is recursive if

• a part of the object refers to the entire object, or

• one part refers to another part and vice versa

(mutual recursion)
Part 1

Introduction, Algorithms, Recursion, Sorting

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Recursion
Recursion is the process of repeating items in a self-similar way. For instance, when the surfaces of two mirrors are exactly parallel with each other the nested ...

Recursion (computer science) - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Recursion_(computer_science)
Recursion in computer science is a method where the solution to a problem depends on solutions to smaller instances of the same problem. The approach can ...

Recursion in C and C++ - Cprogramming.com
by Alex Allain · More by Alex Allain
Learn how to use recursion in C and C++, with example recursive programs.

Recursion -- from Wolfram MathWorld
Part 1

Introduction, Algorithms, Recursion, Sorting

Source: http://bluehawk.monmouth.edu/~rclayton/web-pages/s11-503/recursion.jpg
Recursion/2

• A recursive definition: a concept is defined by referring to itself.

E.g., arithmetical expressions (like \((3 \times 7) - (9 / 3)\)):

\[
\text{EXPR} := \text{VALUE} \mid (\text{EXPR OPERATOR EXPR})
\]

• A recursive procedure: a procedure that calls itself

Classical example: factorial, that is \(n! = 1 \times 2 \times 3 \times \ldots \times n\)

\[n! = n \times (n-1)!\]

… or is there something missing?
The Factorial Function

Pseudocode of factorial:

```plaintext
fac1

INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac1(n)
    if n < 2 then return 1
    else return n * fac1(n-1)
```

This is a recursive procedure. A recursive procedure has
- a termination condition (determines when and how to stop the recursion).
- one (or more) recursive calls.
Tracing the Execution

\[\text{fac}(3) \rightarrow 3 \times \text{fac}(2) \rightarrow 2 \times \text{fac}(1) \rightarrow 1 \]

\[\text{fac}(2) \rightarrow \text{fac}(1) \]

\[\rightarrow 6 \]
Bookkeeping

The computer maintains an activation stack for active procedure calls (→ compiler construction).
Example for fac(5). The stack is built up.

\[
\begin{align*}
\text{fac}(5) &= 5 \times \text{fac}(4) \\
\text{fac}(4) &= 4 \times \text{fac}(3) \\
\text{fac}(3) &= 3 \times \text{fac}(2) \\
\text{fac}(2) &= 2 \times \text{fac}(1) \\
\text{fac}(1) &= 1 \\
\text{fac}(2) &= 2 \times \text{fac}(1) \\
\text{fac}(3) &= 3 \times \text{fac}(2) \\
\text{fac}(4) &= 4 \times \text{fac}(3) \\
\text{fac}(5) &= 5 \times \text{fac}(4)
\end{align*}
\]
Then the activation stack is reduced

\[
\begin{array}{l}
\text{fac}(1) = 1 \\
\text{fac}(2) = 2 \times \text{fac}(1) \\
\text{fac}(3) = 3 \times \text{fac}(2) \\
\text{fac}(4) = 4 \times \text{fac}(3) \\
\text{fac}(5) = 5 \times \text{fac}(4)
\end{array}
\]

\[
\begin{array}{l}
\text{fac}(3) = 6 \\
\text{fac}(4) = 4 \times \text{fac}(3) \\
\text{fac}(5) = 5 \times \text{fac}(4)
\end{array}
\]

\[
\begin{array}{l}
\text{fac}(4) = 24 \\
\text{fac}(5) = 5 \times \text{fac}(4)
\end{array}
\]

\[
\text{fac}(5) = 120
\]
Variants of Factorial

fac2

INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac2(n)
 if n = 0 then return 1
 return n * fac2(n-1)

fac3

INPUT: n – a natural number.
OUTPUT: n! (factorial of n)

fac3(n)
 if n = 0 then return 1
 return n * (n-1) * fac3(n-2)
Analysis of the Variants

fac2 is correct
- The return statement in the if clause terminates the function and, thus, the entire recursion.

fac3 is incorrect
- Infinite recursion.
 The termination condition is never reached if n is odd:

\[
\text{fact}(3) = 3*2*\text{fact}(1) = 3*2*1*0*\text{fact}(-1) = \ldots
\]
Variants of Factorial/2

fac4

INPUT: n - a natural number.

OUTPUT: $n!$ (factorial of n)

```
fac4(n)
  if n <= 1 then return 1
  return n*(n-1)*fac4(n-2)
```

fac5

INPUT: n - a natural number.

OUTPUT: $n!$ (factorial of n)

```
fac5(n)
  return n * fac5(n-1)
  if n <= 1 then return 1
```
Analysis of the Variants/2

\texttt{fac4} is correct

- The return statement in the if clause terminates the function and, thus, the entire recursion.

\texttt{fac5} is incorrect

- Infinite recursion. The termination condition is never reached.
Counting Rabbits

Someone placed a pair of rabbits in a certain place, enclosed on all sides by a wall, so as to find out how many pairs of rabbits will be born there in the course of one year, it being assumed that every month a pair of rabbits produces another pair, and that rabbits begin to bear young two months after their own birth.

Leonardo di Pisa ("Fibonacci"),
Liber abacci, 1202
Counting Rabbits/2

\[
\begin{array}{cccccc}
\text{time} = 0 & 1 & 2 & 3 & 4 & 5 \\
\text{pairs} = 1 & 1 & 2 & 3 & 5 & 8 \\
\end{array}
\]

Source: http://www.jimloy.com/algebra/fibo.htm
Fibonacci Numbers

Definition
• $fib(1) = 1$
• $fib(2) = 1$
• $fib(n) = fib(n-1) + fib(n-2)$, $n > 2$

Numbers in the series:
 1, 1, 2, 3, 5, 8, 13, 21, 34, …
Fibonacci Procedure

A procedure with multiple recursive calls
Fibonacci Procedure/2

```java
public class fibclassic {

    static int fib(int n) {
        if (n <= 2) {return 1;}  
        else {return fib(n - 1) + fib(n - 2);} 
    }

    public static void main(String args[]) { 
        System.out.println("Fibonacci of 5 is "+ fib(5));  
    }

}
```
Tracing $\text{fib}(4)$

\[
\text{fib}(4) \rightarrow \text{fib}(3) + \text{fib}(2) \rightarrow 3 \\
\text{fib}(3) \rightarrow \text{fib}(2) + \text{fib}(1) \rightarrow 2 \\
\text{fib}(2) \rightarrow 1 \\
\text{fib}(1) \rightarrow 1
\]
Part 1: Introduction, Algorithms, Recursion, Sorting

Bookkeeping

<table>
<thead>
<tr>
<th>$\text{fib}(2)$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(3)$</td>
<td>$\text{fib}(2) + \text{fib}(1)$</td>
</tr>
<tr>
<td>$\text{fib}(4)$</td>
<td>$\text{fib}(3) + \text{fib}(2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{fib}(1)$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(2)$</td>
<td>$\text{fib}(1) + 1$</td>
</tr>
<tr>
<td>$\text{fib}(3)$</td>
<td>$1 + \text{fib}(1)$</td>
</tr>
<tr>
<td>$\text{fib}(4)$</td>
<td>$\text{fib}(3) + \text{fib}(2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{fib}(2)$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(3)$</td>
<td>$\text{fib}(2) + \text{fib}(1)$</td>
</tr>
<tr>
<td>$\text{fib}(4)$</td>
<td>$\text{fib}(3) + \text{fib}(2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{fib}(3)$</th>
<th>$1 + \text{fib}(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(4)$</td>
<td>$\text{fib}(3) + \text{fib}(2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{fib}(4)$</th>
<th>$\text{fib}(3) + \text{fib}(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(5)$</td>
<td>$\text{fib}(4) + \text{fib}(3)$</td>
</tr>
<tr>
<td>$\text{fib}(6)$</td>
<td>$\text{fib}(5) + \text{fib}(4)$</td>
</tr>
<tr>
<td>$\text{fib}(7)$</td>
<td>$\text{fib}(6) + \text{fib}(5)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{fib}(8)$</th>
<th>$\text{fib}(7) + \text{fib}(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{fib}(9)$</td>
<td>$\text{fib}(8) + \text{fib}(7)$</td>
</tr>
<tr>
<td>$\text{fib}(10)$</td>
<td>$\text{fib}(9) + \text{fib}(8)$</td>
</tr>
</tbody>
</table>

fib(2)

1

fib(3)

$\text{fib}(2) + \text{fib}(1)$

$1 + 1$

fib(4)

$\text{fib}(3) + \text{fib}(2)$

$1 + \text{fib}(1)$

$1 + 1$

$\text{fib}(2) + \text{fib}(1)$

$\text{fib}(3) + \text{fib}(2)$

$\text{fib}(4) + \text{fib}(3)$
Questions

• How many recursive calls are made to compute $fib(n)$?
• What is the maximal height of the recursion stack during the computation?
• How are number of calls and height of the stack related to the size of the input?
• Can there be a procedure for fib with fewer operations?
• How is the size of the result $fib(n)$ related to the size of the input n?
Mutual Recursion
Mutual Recursion Example

- Problem: Determine whether a natural number is even

- Definition of even:
 - 0 is even
 - N is even if \(N - 1 \) is odd
 - N is odd if \(N - 1 \) is even
Implementation of even

even

INPUT: n – a natural number.
OUTPUT: true if n is even; false otherwise

odd(n)
 if n = 0 then return FALSE
 return even(n-1)

even(n)
 if n = 0 then return TRUE
 else return odd(n-1)

• How can we determine whether N is odd?
Is Recursion Necessary?

• Theory: You can always resort to iteration and explicitly maintain a recursion stack.

• Practice: Recursion is elegant and in some cases the best solution by far.

• In the previous examples recursion was never appropriate since there exist simple iterative solutions.

• Recursion is more expensive than corresponding iterative solutions since bookkeeping is necessary.
DSA, Chapter 1:

- Introduction, syllabus, organisation
- Algorithms
- Recursion (principle, trace, factorial, Fibonacci)
- Sorting (bubble, insertion, selection)
Sorting

- Sorting is a classical and important algorithmic problem.
 - For which operations is sorting needed?
 - Which systems implement sorting?

- We look at sorting arrays
 (in contrast to files, which restrict random access)

- A key constraint are the restrictions on the space: in-place sorting algorithms (no extra RAM).

- The run-time comparison is based on
 - the number of comparisons (C) and
 - the number of movements (M).
Sorting

• **Simple** sorting methods use roughly $n \times n$ comparisons
 – Insertion sort
 – Selection sort
 – Bubble sort

• **Fast** sorting methods use roughly $n \times \log n$ comparisons
 – Merge sort
 – Heap sort
 – Quicksort

What’s the point of studying those simple methods?
Example 2: Sorting

INPUT
sequence of \(n \) numbers

\[a_1, a_2, a_3, \ldots, a_n \]

\[2 \quad 5 \quad 4 \quad 10 \quad 7 \]

OUTPUT
a permutation of the input sequence of numbers

\[b_1, b_2, b_3, \ldots, b_n \]

\[2 \quad 4 \quad 5 \quad 7 \quad 10 \]

Correctness (requirements for the output)
For any given input the algorithm halts with the output:

- \(b_1 \leq b_2 \leq b_3 \leq \ldots \leq b_n \)
- \(b_1, b_2, b_3, \ldots, b_n \) is a permutation of \(a_1, a_2, a_3, \ldots, a_n \)
Insertion Sort

Strategy

• Start with one sorted card.
• Insert an unsorted card at the correct position in the sorted part.
• Continue until all unsorted cards are inserted/sorted.

```
3 4 6 8 9 7 2 5 1
```

```
Start with one sorted card.
Insert an unsorted card
at the correct position
in the sorted part.
Continue until all unsorted cards are inserted/sorted.
```
Insertion Sort/2

INPUT: A[1..n] – an array of integers

for j := 2 to n do // A[1..j-1] sorted
 key := A[j]; i := j-1;
 while i > 0 and A[i] > key do
 A[i+1] := A[i]; i--;
 A[i+1] := key

The number of comparisons during the j th iteration is

- at least 1: Cmin = \[\sum_{j=2}^{n} 1 = n - 1 \]

- at most j-1: Cmax = \[\sum_{j=2}^{n} (j-1) = (n^2-n-n)/2 \]