
Slides by M. Böhlen and R. Sebastiani11/04/14 1

Data Structures and
Algorithms

Werner Nutt
Werner.Nutt@unibz.it

http://www.inf.unibz/it/~nutt

Chapter 5

Academic Year 2013/14

Slides by M. Böhlen and R. Sebastiani11/04/14 2

Acknowledgements
& Copyright Notice

These slides are built on top of slides developed by Michael Boehlen.
Moreover, some material (text, figures, examples) displayed in these slides
is courtesy of Kurt Ranalter. Some examples displayed in these slides are

taken from [Cormen, Leiserson, Rivest and Stein, ``Introduction to
Algorithms'', MIT Press], and their copyright is detained by the authors. All
the other material is copyrighted by Roberto Sebastiani. Every commercial
use of this material is strictly forbidden by the copyright laws without the
authorization of the authors. No copy of these slides can be displayed in
public or be publicly distributed without containing this copyright notice.

http://www.ifi.uzh.ch/dbtg/Staff/Boehlen/

Slides by M. Böhlen and R. Sebastiani11/04/14 3

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 4

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 5

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 6

Records
● Records are used to group a number of

(different) fields.
● A person record may group name, age,

city, nationality, ssn.
● The grouping of fields is a basic and

often used technique.
● It is available in all programming

languages.

Slides by M. Böhlen and R. Sebastiani11/04/14 7

Records in Java
● In java a class is used to group fields:

class rec { int a; int b; };

public class dummy {

 static rec r;

 public static void main(String args[]) {
 r = new rec();
 r.a = 15; r.b = 8;
 System.out.print(“Adding a and b yields “);
 System.out.println(r.a + r.b);
 }
}

class rec { int a; int b; };

public class dummy {

 static rec r;

 public static void main(String args[]) {
 r = new rec();
 r.a = 15; r.b = 8;
 System.out.print(“Adding a and b yields “);
 System.out.println(r.a + r.b);
 }
}

Slides by M. Böhlen and R. Sebastiani11/04/14 8

Records in C
● In C a struct is used to group fields:
struct rec {
 int a;
 int b;
};

struct rec r;

int main() {
 r.a = 5; r.b = 8;
 printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy

struct rec {
 int a;
 int b;
};

struct rec r;

int main() {
 r.a = 5; r.b = 8;
 printf(“The sum of a and b is %d\n”, r.a + r.b);
}

// gcc -o dummy dummy.c ; ./dummy

Slides by M. Böhlen and R. Sebastiani11/04/14 9

Recursive Data Structures
● The counterpart of recursive functions are

recursively defined data structures.
● Example: list of integers

● In C:
struct list {
 int value;
 Struct list * tail; };

list={ integer
integer , list }

Slides by M. Böhlen and R. Sebastiani11/04/14 10

Recursive Data Structures/2
● The storage space of recursive data

structures is not known in advance.
– It is determined by the number of

elements that will be stored in the list.
– This is only known during runtime

(program execution).
– The list can grow and shrink during

program execution.

Slides by M. Böhlen and R. Sebastiani11/04/14 11

Recursive Data Structures/3
● There must be a mechanism

to constrain the initial storage space
of recursive data structures
(it is potentially infinite).

● There must be a mechanism
to grow and shrink the storage space
of a recursive data structures
during program execution.

Slides by M. Böhlen and R. Sebastiani11/04/14 12

Pointers
● A common technique is to allocate the

storage space (memory) dynamically.
● That means the storage space is

allocated when the program executes.
● The compiler only reserves space for an

address to these dynamic parts.
● These addresses are called pointers.

Slides by M. Böhlen and R. Sebastiani11/04/14 13

Pointers/2
● integer i
● pointer p to an

integer (55)
● record r with

integer compo-
nents a (17)
and b (24)

● pointer s that
points to r

1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i

1

Slides by M. Böhlen and R. Sebastiani11/04/14 14

Pointers in C
1. To follow (chase, dereference) a pointer variable we

write *p
n *p = 12

2. To get the address of a variable i we write &i
n p = &i

3. To allocate memory we use malloc(sizeof(Type)),
which returns an address in the memory heap
n p = malloc(sizeof(int))

4. To free storage space pointed to by a pointer p we
use free
n free(p)

Slides by M. Böhlen and R. Sebastiani11/04/14 15

Pointers in C/2
● To declare a pointer to type T we write T*

– int* p
● Note that * is used for two purposes:

– Declaring a pointer variable
int* p

– Following a pointer
*p = 15

● In other languages these are syntactically
different.

Slides by M. Böhlen and R. Sebastiani11/04/14 16

Pointers in C/3
● int i

i = 23
● int* p

p = malloc(sizeof(int))
*p = 55

● struct rec r
rec.a = 17
rec.b = 24

● struct rec* s;
s = &r

1af78a

MemoryVariableAddress

1af789
1af788
1af787
1af786
1af785
1af784
1af783
1af782

55

1af784s
24
17r
1af789p
23i

2

Slides by M. Böhlen and R. Sebastiani11/04/14 17

Pointers in C/4

1af78a

MemoryVariableAddress

1af789

1af788

1af787

1af786

1af785

1af784

1af783

1af782

55

1af784s

24

17r

1af789p

23i

MemoryVariable

55

s
24
17r

p
23i

Alternative notation:

Slides by M. Böhlen and R. Sebastiani11/04/14 18

Pointers/3
● Pointers are only one mechanism

to implement recursive data structures.
● The programmer does not have to be aware

of their existence.
The storage space can be managed automatically.

● In C the storage space has to be managed explicitly.
● In Java

– an object is implemented as a pointer.
– creation of objects (new)

automatically allocates storage space.
– accessing an object will automatically follow the pointer.
– deallocation is done automatically (garbage collection).

Slides by M. Böhlen and R. Sebastiani11/04/14 19

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 20

Lists
● A list of integers:

● Corresponding declaration in Java:

● Accessing a field: p.a

class node {
 int val;
 node next;
}

node root;

class node {
 int val;
 node next;
}

node root;

88 52 11 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 21

Lists/2
● A list of integers:

● Corresponding declaration in C:

● Accessing a field: (*p).a = p->a

struct node {
 int val;
 struct node* next;
}

struct node* root;

struct node {
 int val;
 struct node* next;
}

struct node* root;

88 52 11 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 22

Lists/3
● Populating the list with integers (Java):

root = new node();
root.val = 88;
root.next = new node();

p = root.next;
p.val = 52;
p.next = new node();

p = p.next;
p.val = 12;
p.next = null;

88 52 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 23

Lists/4
● Populating the list with integers (C):

root = malloc(sizeof(struct node));
root->val = 88;
root->next = malloc(sizeof(struct node));

p = root->next;
p.val = 52;
p->next = malloc(sizeof(struct node));

p = p->next;
p->val = 12;
p->next = NULL;

88 52 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 24

List Traversal
● Print all elements of a list (Java):

p = root;
while (p != null) {
 System.out.printf(“%d,”, p.val);
 p = p.next
}
System.out.printf(“\n”);

p = root;
while (p != null) {
 System.out.printf(“%d,”, p.val);
 p = p.next
}
System.out.printf(“\n”);

88 52 12root

5
6

Slides by M. Böhlen and R. Sebastiani11/04/14 25

List Traversal
● Print all elements of a list (C):

p = root;
while (p != null) {
 printf(“%d,”, p->val);
 p = p->next
}
printf(“\n”);

p = root;
while (p != null) {
 printf(“%d,”, p->val);
 p = p->next
}
printf(“\n”);

88 52 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 26

List Insertion
● Insert 43 at the beginning (Java):

p = new node();
p.val = 43
p.next = root;
root = p;

p = new node();
p.val = 43
p.next = root;
root = p;

88 12

root 88 1243

root

Slides by M. Böhlen and R. Sebastiani11/04/14 27

List Insertion
● Insert 43 at the beginning (C):

p = malloc(sizeof(struct node));
p->val = 43
p->next = root;
root = p;

p = malloc(sizeof(struct node));
p->val = 43
p->next = root;
root = p;

88 12

root 88 1243

root

Slides by M. Böhlen and R. Sebastiani11/04/14 28

List Insertion/2
Insert 43 at end (Java):

if (root == null) {
 root = new node();
 root.val = 43;
 root.next = null;
} else {
 q = root;
 while (q.next != null) { q = q.next; }
 q.next = new node();
 q.next.val = 43;
 q.next.next = null;
}

if (root == null) {
 root = new node();
 root.val = 43;
 root.next = null;
} else {
 q = root;
 while (q.next != null) { q = q.next; }
 q.next = new node();
 q.next.val = 43;
 q.next.next = null;
}

88 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 29

List Insertion/2
Insert 43 at end (C):

if (root == null) {
 root = malloc(sizeof(struct node));
 root->val = 43;
 root->next = null;
} else {
 q = root;
 while (q->next != null) { q = q->next; }
 q->next = malloc(sizeof(struct node));
 q->next->val = 43;
 q->next->next = null;
}

if (root == null) {
 root = malloc(sizeof(struct node));
 root->val = 43;
 root->next = null;
} else {
 q = root;
 while (q->next != null) { q = q->next; }
 q->next = malloc(sizeof(struct node));
 q->next->val = 43;
 q->next->next = null;
}

88 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 30

List Deletion
Delete element x from a non-empty list (Java):

p = root;
if (p.val == x) {
 root = p.next;
} // no need of freeing in java
else {
 while (p.next != null && p.next.val != x) {
 p = p.next;
 }
 tmp = p.next;
 p.next = tmp.next;
}

p = root;
if (p.val == x) {
 root = p.next;
} // no need of freeing in java
else {
 while (p.next != null && p.next.val != x) {
 p = p.next;
 }
 tmp = p.next;
 p.next = tmp.next;
}

Slides by M. Böhlen and R. Sebastiani11/04/14 31

List Deletion
Delete element x from a non-empty list (C):

p = root;
if (p->val == x) {
 root = p->next;
 free(p);
} else {
 while (p->next != null && p->next->val != x) {
 p = p->next;
 }
 tmp = p->next;
 p->next = tmp->next
 free(tmp);
}

p = root;
if (p->val == x) {
 root = p->next;
 free(p);
} else {
 while (p->next != null && p->next->val != x) {
 p = p->next;
 }
 tmp = p->next;
 p->next = tmp->next
 free(tmp);
}

Slides by M. Böhlen and R. Sebastiani11/04/14 32

List
● Cost of operations:

– Insertion at beginning: O(1)
– Insert at end: O(n)
– Check isEmpty: O(1)
– Delete from the beginning: O(1)
– Search: O(n)
– Delete: O(n)
– Print: O(n)

Slides by M. Böhlen and R. Sebastiani11/04/14 33

Suggested exercises
● Implement a linked list with the

following functionalities: isEmpty,
insertFirst, insertLast, search,
deleteFirst, delete, print

● As before, with a recursive version of:
insertLast, search, delete, print

– are recursive versions simpler?
● Implement an efficient version of print

which prints the list in reverse order

Slides by M. Böhlen and R. Sebastiani11/04/14 34

Variants of linked lists
● Linked lists with explicit head/tail
● Doubly linked lists

Slides by M. Böhlen and R. Sebastiani11/04/14 35

● Instead of a root we can have a head
and tail:

List with Explicit Head/Tail

Slides by M. Böhlen and R. Sebastiani11/04/14 36

Doubly Linked Lists
● To be able to quickly navigate back and

forth in a list we use doubly linked
lists.

● A node of a doubly linked list has a next
and a prev link.

Slides by M. Böhlen and R. Sebastiani11/04/14 37

Slides by M. Böhlen and R. Sebastiani11/04/14 38

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 39

Abstract Data Types (ADTs)
● An ADT is a mathematically specified

entity that defines a set of its instances,
with:
– a specific interface – a collection of

signatures of operations that can be invoked
on an instance.

– a set of axioms (preconditions and post-
conditions) that define the semantics of the
operations (i.e., what the operations do to
instances of the ADT, but not how).

Slides by M. Böhlen and R. Sebastiani11/04/14 40

ADTs/2
n Why ADTs?

n ADTs allows to break work into pieces
that can be worked on independently –
without compromising correctness.
n They serve as specifications of requirements

for the building blocks of solutions to
algorithmic problems.

n ADTs encapsulate data structures and
algorithms that implement them.

Slides by M. Böhlen and R. Sebastiani11/04/14 41

ADTs/3
n Provides a language to talk on a higher level

of abstraction.
n Allows to separate the concerns of

correctness and the performance analysis
1. Design the algorithm using an ADT
2. Count how often different ADT operations are

used
3. Choose implementations of ADT operations

n ADT = Instance variables + procedures
(Class = Instance variables + methods)

Slides by M. Böhlen and R. Sebastiani11/04/14 42

ADTs/4
● We discuss a number of popular ADTs:

– Stacks, Queues
– Ordered Lists
– Priority Queues
– Trees (next chapter)

● They illustrate the use of lists and
arrays.

Slides by M. Böhlen and R. Sebastiani11/04/14 43

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 44

Stacks
● In a stack, insertions and deletions follow the last-in-

first-out (LIFO) principle.
● Thus, the element that has been in the queue for the

shortest time are deleted.
– Example: OS stack, …

● Solution: Elements are inserted at the beginning
(push) and removed from the beginning (pop).

Beginning Stack

Slides by M. Böhlen and R. Sebastiani11/04/14 45

Stacks/2
● Appropriate data structure:

– Linked list, one root: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary

Slides by M. Böhlen and R. Sebastiani11/04/14 46

An Array Implementation
● Create a stack using an array
● A maximum size N is specified.
● The stack consists of an N-element array S

and one integer variable count:
– count: index of the front element (head)
– count represents the position where to insert next

element, and the number of elements in the stack

Slides by M. Böhlen and R. Sebastiani11/04/14 47

An Array Implementation/2
int size()
 return count

int size()
 return count

int isEmpty()
 return (count == 0)

int isEmpty()
 return (count == 0)

Element pop()
 if isEmpty() then Error
 x = S[count-1]
 count--;
 return x

Element pop()
 if isEmpty() then Error
 x = S[count-1]
 count--;
 return x

void push(element x)
 if count==N then Error;
 S[count] = x;
 count++;

void push(element x)
 if count==N then Error;
 S[count] = x;
 count++;

Slides by M. Böhlen and R. Sebastiani11/04/14 48

A Linked-List
implementation
● A list of integers:

● Insert from the top of the list

● Constant-time operation!

push(element x):

node p = new node();
p.val = x;
p.next = root;
root = p;

push(element x):

node p = new node();
p.val = x;
p.next = root;
root = p;

88 52 11 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 49

A Linked-List
implementation
● A list of integers:

● Extract from the top of the list

● Constant-time operation!

Element pop():

x = root.val;
root = root.next;
Return x;

Element pop():

x = root.val;
root = root.next;
Return x;

88 52 11 12root

Slides by M. Böhlen and R. Sebastiani11/04/14 50

Queues
● In a queue insertions and deletions follow the first-

in-first-out (FIFO) principle.
● Thus, the element that has been in the queue for the

longest time are deleted.
– Example: Printer queue, …

● Solution: Elements are inserted at the end (enqueue)
and removed from the beginning (dequeue).

Beginning EndQueue

Slides by M. Böhlen and R. Sebastiani11/04/14 51

Queues/2
● Appropriate data structure:

– Linked list, root: inefficient insertions
– Linked list, head/tail: good
– Array: fastest, limited in size
– Doubly linked list: unnecessary

Slides by M. Böhlen and R. Sebastiani11/04/14 52

An Array Implementation
● Create a queue using an array in a circular

fashion
● A maximum size N is specified.
● The queue consists of an N-element array Q

and two integer variables:
– f, index of the front element (head, for dequeue)
– r, index of the element after the last one (tail, for

enqueue)

Slides by M. Böhlen and R. Sebastiani11/04/14 53

An Array Implementation/2
● “wrapped around” configuration

● what does f=r mean?

Slides by M. Böhlen and R. Sebastiani11/04/14 54

An Array Implementation/3
int size()
 return (N-f+r) mod N

int size()
 return (N-f+r) mod N

int isEmpty()
 return size() == 0

int isEmpty()
 return size() == 0

Element dequeue()
 if isEmpty() then Error
 x = Q[f]
 f = (f+1) mod N
 return x

Element dequeue()
 if isEmpty() then Error
 x = Q[f]
 f = (f+1) mod N
 return x

void enqueue()
 if size()==N-1 then Error
 Q[r] = x
 r = (r+1) mod N

void enqueue()
 if size()==N-1 then Error
 Q[r] = x
 r = (r+1) mod N

We assume
arrays
as in Java,
with indexes
from 0 to n-1

Slides by M. Böhlen and R. Sebastiani11/04/14 55

● Use linked-list with head and tail
● Insert in tail, extract from head

A Linked-List
Implementation

Slides by M. Böhlen and R. Sebastiani11/04/14 56

A Linked-List
implementation/2

● Insert at the end of the list: O(1)
enqueue(element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

enqueue(element x):
node p = new node();
p.info = x; p.next = null;
tail.next=p;
tail=tail.next;

Slides by M. Böhlen and R. Sebastiani11/04/14 57

A Linked-List
implementation/3

● Extract from the top of the list: O(1)

Element dequeue():
x = root.info;
root = root.next;
Return x;

Element dequeue():
x = root.info;
root = root.next;
Return x;

Slides by M. Böhlen and R. Sebastiani11/04/14 58

Suggested exercises

● Implement stack and queue as arrays
● Implement stack and queue as linked

lists, with the same interface as the array
implementation

Slides by M. Böhlen and R. Sebastiani11/04/14 59

Suggested exercises/2

● Suppose a queue of integers is
implemented with an array of 8
elements: draw the outputs and status of
such array after the following
operations:

● enqueue 2,4,3,1,7,6,9
● dequeue 3 times
● Enqueue 2,3,4

Can we enqueue any more element?
● Try the same with a stack
● Try similar examples (also with a stack)

Slides by M. Böhlen and R. Sebastiani11/04/14 60

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 61

Ordered List
● In an ordered list elements are ordered

according to a key.
● Example functions on ordered list:
– init()
– isEmpty()
– Search(element x)
– delete(element x)
– print()
– insert(element x)

Slides by M. Böhlen and R. Sebastiani11/04/14 62

Ordered List/2
● Declaration of an ordered list identical

to unordered list
● Some operations (search, and hence

insert and delete) are slightly different

Slides by M. Böhlen and R. Sebastiani11/04/14 63

Ordered List/3

void insert(node l, int x) {
 node p;
 node q;

 if (root == NULL || root.val > x) {
 p = new node();
 p.val = x;
 p.next = root;
 root = p;
 } else {
…

void insert(node l, int x) {
 node p;
 node q;

 if (root == NULL || root.val > x) {
 p = new node();
 p.val = x;
 p.next = root;
 root = p;
 } else {
…

● Insertion into an ordered list (java):

Slides by M. Böhlen and R. Sebastiani11/04/14 64

Ordered List/4

void insert(node l, int x) {
 …
 } else {
 p = root;
 while (p.next != NULL && p.next.val < x)
 p = p.next;
 q = new node();
 q.val = x;
 q.next = p.next;
 p.next = q;
 }
}

void insert(node l, int x) {
 …
 } else {
 p = root;
 while (p.next != NULL && p.next.val < x)
 p = p.next;
 q = new node();
 q.val = x;
 q.next = p.next;
 p.next = q;
 }
}

● Insertion into an ordered list (java):

Slides by M. Böhlen and R. Sebastiani11/04/14 65

Ordered List/5

void insert(struct node* l, int x) {
 struct node* p;
 struct node* q;

 if (root == NULL || root->val > x) {
 p = malloc(sizeof(struct node));
 p->val = x;
 p->next = root;
 root = p;
 } else {
…

void insert(struct node* l, int x) {
 struct node* p;
 struct node* q;

 if (root == NULL || root->val > x) {
 p = malloc(sizeof(struct node));
 p->val = x;
 p->next = root;
 root = p;
 } else {
…

● Insertion into an ordered list (C):

Slides by M. Böhlen and R. Sebastiani11/04/14 66

Ordered List/6

void insert(struct node* l, int x) {
 …
 } else {
 p = root;
 while (p->next != NULL && p->next->val < x)
 p = p->next;
 q = malloc(sizeof(struct node));
 q->val = x;
 q->next = p->next;
 p->next = q;
 }
}

void insert(struct node* l, int x) {
 …
 } else {
 p = root;
 while (p->next != NULL && p->next->val < x)
 p = p->next;
 q = malloc(sizeof(struct node));
 q->val = x;
 q->next = p->next;
 p->next = q;
 }
}

● Insertion into an ordered list (C):

Slides by M. Böhlen and R. Sebastiani11/04/14 67

Ordered List
● Cost of operations:

– Insertion: O(n)
– Check isEmpty: O(1)
– Search: O(n)
– Delete: O(n)
– Print: O(n)

Slides by M. Böhlen and R. Sebastiani11/04/14 68

Suggested exercises
● Implement an ordered list with the

following functionalities: isEmpty, insert
search, delete, print

● Implement also deleteAllOccurrences()
● As before, with a recursive version of:

insert, search, delete, print
– are recursive versions simpler?

● Implement an efficient version of print
which prints the list in reverse order

Slides by M. Böhlen and R. Sebastiani11/04/14 69

Data Structures and
Algorithms

Chapter 5
● Dynamic Data Structures

– Records, Pointers
– Lists

● Abstract Data Types
– Stack, Queue
– Ordered Lists
– Priority Queue

Slides by M. Böhlen and R. Sebastiani11/04/14 70

Priority Queues
● A priority queue is an ADT for

maintaining a set S of elements, each
with an associated value called key.

● A PQ supports the following operations
– Insert(S,x) insert element x in set S (S :=

S  {x})
– ExtractMax(S) returns and removes the

element of S with the largest key
● One way of implementing it: a heap

Slides by M. Böhlen and R. Sebastiani11/04/14 71

Priority Queues/2
● Removal of max takes constant time on

top of Heapify Θ(log n)

ExtractMax(A)
 // removes & returns largest elem of A
 max := A[1]
 A[1] := A[n]
 n := n-1
 Heapify(A, 1, n)
 return max

ExtractMax(A)
 // removes & returns largest elem of A
 max := A[1]
 A[1] := A[n]
 n := n-1
 Heapify(A, 1, n)
 return max

Slides by M. Böhlen and R. Sebastiani11/04/14 72

Priority Queues/3
● Insertion of a new element

– enlarge the PQ and propagate the new
element from last place ”up” the PQ

– tree is of height log n, running time: Θ(log n)
Insert(A,key)
 n := n+1;
 i := n;
 while i > 1 and A[parent(i)] < key
 A[i] := A[parent(i)]
 i := parent(i)
 A[i] := key

Insert(A,key)
 n := n+1;
 i := n;
 while i > 1 and A[parent(i)] < key
 A[i] := A[parent(i)]
 i := parent(i)
 A[i] := key

Slides by M. Böhlen and R. Sebastiani11/04/14 73

Priority Queues/4
16

14

8 7

142

9 3

10
16

14

8 7

142

9 3

10

16
15

8 14

142

9 3

10

16

8 14

142

9 3

10

77

a) b)

d)c)

Slides by M. Böhlen and R. Sebastiani11/04/14 74

Priority Queues/5
● Applications:

– job scheduling shared computing
resources (Unix)

– Event simulation
– As a building block for other algorithms

● We used a heap and an array to
implement PQ. Other implementations
are possible.

Slides by M. Böhlen and R. Sebastiani11/04/14 75

Suggested exercises
● Implement a priority queue
● Consider the PQ of previous slides. Draw

the status of the PQ after each of the
following operations:

● Insert 17,18,18,19
● Extract four numbers
● Insert again 17,18,18,19

● Build a PQ from scratch, adding and
inserting elements at will, and draw the
status of the PQ after each operation

Slides by M. Böhlen and R. Sebastiani11/04/14 76

Summary
● Records, Pointers
● Dynamic Data Structures

– Lists (root, head/tail, doubly linked)
● Abstract Data Types

– Type + Functions
– Stack, Queue
– Ordered Lists
– Priority Queues

Slides by M. Böhlen and R. Sebastiani11/04/14 77

Next Chapter
● Binary Search Trees
● Red-Black Trees

